研究论文

基于C—C键断裂碱促进扩环构建环庚酮化合物

  • 王微 ,
  • 崔雪 ,
  • 马健婷 ,
  • 李友宾 ,
  • 王雪松
展开
  • 海南医学院药学院 热带转化医学教育部重点实验室 海南省热带药用植物研究开发重点实验室 海口市黎族医药重点实验室 海口 571199
† 共同第一作者(These authors contributed equally to this work).

收稿日期: 2021-01-18

  修回日期: 2021-04-08

  网络出版日期: 2021-04-25

基金资助

海南省自然科学青年基金(820QN264); 2019年海南省基础与应用基础研究计划(自然科学领域)高层次人才基金(2019RC214); 海南医学院引进人才启动基金(XRC180009)

Base-Promoted Ring Expansion Reactions for the Construction of Cycloheptanones through C—C Bond Cleavage

  • Wei Wang ,
  • Xue Cui ,
  • Jianting Ma ,
  • Youbin Li ,
  • Xuesong Wang
Expand
  • Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199
* Corresponding authors. E-mail: ;

Received date: 2021-01-18

  Revised date: 2021-04-08

  Online published: 2021-04-25

Supported by

Hainan Provincial Natural Science Youth Foundation of China(820QN264); High-level Talents Fund of Basic and Applied Basic Research Program (Natural Science) of Hainan Province in 2019(2019RC214); Talent Introduction Start-up Fund of Hainan Medical University(XRC180009)

摘要

报道了通过C—C键断裂开环构建环庚酮化合物的有效策略. 反应在碳酸铯存在下进行, 无需使用任何金属和氧化剂, 具有原料易得、底物适用性良好、反应条件温和的优点. 这种无金属催化炔插入C—Cσ-键, 通过分子内亲核加成/开环反应构建环庚酮化合物的方法, 在有机合成化学中有着广泛的应用前景。

本文引用格式

王微 , 崔雪 , 马健婷 , 李友宾 , 王雪松 . 基于C—C键断裂碱促进扩环构建环庚酮化合物[J]. 有机化学, 2021 , 41(7) : 2715 -2722 . DOI: 10.6023/cjoc202101031

Abstract

An efficient ring expansion strategy has been developed for the construction of cycloheptanones through C—C bond cleavage. The reactions take place with easily accessible starting materials, good functional group tolerance, and mild reaction conditions in the presence of Cs2CO3 without any metal or oxidant reagent. The transition-metal free insertions of alkynes into carbon-carbon σ-bonds of acenaphthenone initialized through intramolecular nucleophilic addition/ring-opening to furnish multifarious cycloheptanones, which has the potential to be widely utilized in organic synthetic chemistry.

参考文献

[1]
For selected reviews on C—C bond cleavage, see: (a) Chen,P. -H.; Billett,B. A.; Tsukamoto, T.; Dong,, G. ACS Catal. 2017, 7,1340.
[1]
(b) Wang, T.; Jiao, N. Acc. Chem. Res. 2014, 47,1137.
[1]
(c) Murakami, M.; Matsuda, T. Chem. Commun. 2011, 47,1100.
[1]
(d) Jun,C. H. Chem. Soc. Rev. 2004, 33,610.
[2]
For selected reviews, see: (a) Souillart, L.; Cramer,, N. Chem. Rev. 2015, 115,9410.
[2]
(b) Dermenci, A.; Coe,J. W.; Dong, G. Org. Chem. Front. 2014, 1,567.
[2]
(c) Mack,D. J.; Njardarson,J. T. ACS Catal. 2013, 3,272.
[2]
(d) Murakami, M.; Amii, H.; Ito, Y. Nature 1994, 370,540.
[3]
For selected examples, see: (e) Zhang, H.; Wu,, G.; Yi,, H.; Sun,, T.; Wang,, B.; Zhang,, y.; Dong,, G.; Wang,, J. Angew. Chem. Int. Ed. 2017, 56,3945.
[3]
(f) Banik,S. M.; Mennie,,K. M..; Jacobsen,,E. N. J. Am. Chem. Soc. 2017, 139,9152.
[3]
(g) Zhao, B.; Shi,, Z. Angew. Chem. Int. Ed. 2017, 56,12727.
[4]
(a) Yamamoto,S. -I.; Okamoto, K.; Murakoso, M.; Kuninobu, Y.; Takai, K. Org. Lett. 2012, 14,3182.
[4]
(b) Kuninobu, Y.; Matsuzaki, H.; Nishi, M.; Takai, K. Org. Lett. 2011, 13,2959.
[4]
(c) Kuninobu, Y.; Takata, H.; Kawata, A.; Takai, K. Org. Lett. 2008, 10,3133.
[4]
(d) Kuninobu, Y.; Kawata, A.; Takai, K. J. Am. Chem. Soc. 2006, 128,11368.
[4]
(e) Hirata, Y.; Yada, A.; Morita, E.; Nakao, Y.; Hiyama, T.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2010, 132,10070.
[4]
(f) Hirata, Y.; Inui, T.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2009, 131,6624.
[4]
(g) Nishihara, Y.; Inoue, Y.; Itazaki, M.; Takagi, K. Org. Lett. 2005, 7,2639.
[4]
(h) Miura, T.; Shimada, M.; Murakami, M. Angew. Chem. Int. Ed. 2005, 44,7598.
[4]
(i) Zhao, J.; Liu, J.; Xie, X.; Li, S.; Liu, Y. Org. Lett. 2015, 17,5926.
[5]
(a) Yu,X. -Y.; Chen,J. -R.; Xiao,W. -J. Chem. Rev. 2021, 121,506.
[5]
(b) Pirenne, V.; Muriel, B.; Waser, J. Chem. Rev. 2021, 121,227.
[5]
(c) Vicente, R. Chem. Rev. 2021, 121,162.
[5]
(d) Lu, H.; Yu,T. -Y.; Xu,P. -F.; Wei, H. Chem. Rev. 2021, 121,365.
[5]
(e) Nogi, K.; Yorimitsu, H. Chem. Rev. 2021, 121,345.
[5]
(f) Cohen, Y.; Cohen, A.; Marek, I. Chem. Rev. 2021, 121,140.
[5]
(g) Murakami, M.; Ishida, N. Chem. Rev. 2021, 121,264.
[5]
(h) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115,9410.
[5]
(i) Lutz,M. D.R.; Morandi, B. Chem. Rev. 2021, 121,300.
[5]
(j) Wang, J.; Li, F.; Yu, X.; Liu, L.; Ding, J.; Xie, P.; Wang, J. Chin. J. Org. Chem. 2018, 38,1638 (in Chinese).
[5]
( 王晶晶, 李峰, 于晓波, 刘澜涛, 丁俊汝, 谢佩瑶, 王建辉, 有机化学, 2018, 38,1638.)
[5]
(k) Kou, X.; Fan, J.; Tong, X.; Shen, Z. Chin. J. Org. Chem. 2013, 33,1407 (in Chinese).
[5]
( 寇学振, 范佳骏, 童晓峰, 沈增明, 有机化学, 2013, 33,1407.)
[5]
(l) Dai, H.; Wu, F.; Bai, D. Chin. J. Org. Chem. 2020, 40,1423 (in Chinese).
[5]
( 代洪雪, 吴芬, 白大昌, 有机化学, 2020, 40,1423.)
[6]
(a) Tambar,U. K.; Stoltz,B. M. J. Am. Chem. Soc. 2005, 127,5340.
[6]
(b) Yoshida, H.; Shirakawa, E.; Honda, Y.; Hiyama, T. Angew. Chem. Int. Ed. 2002, 41,3247.
[6]
(c) Yoshida, H.; Watanabe, M.; Ohshita, J.; Kunai, A. Chem. Commun. 2005,3292.
[6]
(d) Yoshida, H.; Watanabe, M.; Morishita, T.; Ohshita, J.; Kunai, A. Chem. Commun. 2007,1505.
[6]
(e) Yoshida, H.; Kishida, T.; Watanabe, M.; Ohshita, J. Chem. Commun. 2008,5963.
[6]
(f) Li, R.; Tang, H.; Fu, H.; Ren, H.; Wang, X.; Wu, C.; Wu, C.; Shi, F. J. Org. Chem. 2014, 79,1344.
[6]
(g) Okuma, K.; Itoyama, R.; Sou, A.; Nagahora, N.; Shioj, K. Chem. Commun. 2012, 48,11145.
[6]
(h) Ziadi, A.; Martin, R. Org. Lett. 2012, 14,1266.
[6]
(i) Masarwa, A.; Weber, M.; Sarpong, R. J. Am. Chem. Soc. 2015, 137,6327.
[6]
(j) Xia, Y.; Liu, Z.; Liu, Z.; Ge, R.; Ye, F.; Hossain, M.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2014, 136,3013.
[6]
(k) Souillart, L.; Cramer, N. Chem. Sci. 2014, 5,837.
[6]
(l) JuliaHernandez, F.; Ziadi, A.; Nishimura, A.; Martin, R. Angew. Chem. Int. Ed. 2015, 54,9537.
[6]
(m) Wright,A. C.; Haley,C. K.; Lapointe, G.; Stoltz,B. M. Org. Lett. 2016, 18,2793.
[6]
(n) Samineni, R.; Srihari, P.; Mehta, G. Org. Lett. 2016, 18,2832.
[7]
Gampe,C. M.; Boulos, S.; Carreira,E. M. Angew. Chem. Int. Ed. 2010, 49,4092.
[8]
Yao, Q.; Kong, L.; Wang, M.; Yuan, Y.; Sun, R.; Li, Y. Org. Lett. 2018, 20,1744.
[9]
Wang, M.; Yang, Y.; Song, B.; Yin, L.; Yan, S.; Li, Y. Org. Lett. 2020, 22,155.
[10]
Yao, Q.; Kong, L.; Zhang, F.; Tao, X.; Li, Y. Adv. Synth. Catal. 2017, 359,3079.
[11]
Zhang, F.; Yao, Q.; Yuan, Y.; Xu, M.; Kong, L.; Li, Y. Org. Biomol. Chem. 2017, 15,2497.
[12]
(a) Cheng, X.; Zhou, Y.; Zhang, F.; Zhu, K.; Liu, Y.; Li, Y. Chem.-Eur. J. 2016, 22,12655.
[12]
(b) Zhou, Y.; Tao, X.; Yao, Q.; Zhao, Y.; Li, Y. Chem.-Eur. J. 2016, 22,17936.
[13]
(a) Gill, M.; Steglich, W. Prog. Chem. Org. Nat. Prod. 1987, 51,1.
[13]
(b) Hafeman,N. J.; Loskot,S. A.; Reimann,C. E.; Pritchett,B. P.; Virgil,S. C.; Stoltz,B. M. J. Am. Chem. Soc. 2020, 142,8585.
[13]
(c) Zhang,P. P.; Yan,Z. M.; Li,Y. H.; Gong,J. X.; Yang, Z. J. Am. Chem. Soc. 2017, 139,13989.
文章导航

/