研究论文

铜催化2-羟基芳基烯胺酮经三氟甲基自由基加成串联环化反应合成3-三氟甲基色酮

  • 杜科莹 ,
  • 张展铭 ,
  • 盛卫坚
展开
  • 浙江工业大学化学工程学院 杭州 310014

收稿日期: 2021-02-01

  修回日期: 2021-03-16

  网络出版日期: 2021-05-08

Copper-Catalyzed the Synthesis of 3-Trifluoromethylchromone via Trifluoromethyl Radical Addition Tandem Cyclization Reaction of 2-Hydroxyphenyl Enaminones

  • Keying Du ,
  • Zhanming Zhang ,
  • Weijian Sheng
Expand
  • College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014
*Corresponding author.E-mail:

Received date: 2021-02-01

  Revised date: 2021-03-16

  Online published: 2021-05-08

摘要

色酮化合物因其独特的骨架结构在抗肿瘤、抗菌和抗炎等方面表现出很强的药物活性. 以Cu(OAc)2为催化剂, CF3SO2Na为三氟甲基自由基源, 过氧化叔丁醇(TBHP)为氧化剂, 2-羟基苯基烯胺酮经自由基加成串联环化反应合成了3-三氟甲基色酮, 反应条件温和, 烯胺酮底物具有良好的普适性.

本文引用格式

杜科莹 , 张展铭 , 盛卫坚 . 铜催化2-羟基芳基烯胺酮经三氟甲基自由基加成串联环化反应合成3-三氟甲基色酮[J]. 有机化学, 2021 , 41(8) : 3242 -3248 . DOI: 10.6023/cjoc202102007

Abstract

Chromones have shown strong drug activity in anti-tumor, antibacterial and anti-inflammatory aspects for their unique skeleton structure. Using Cu(OAc)2 as catalyst, CF3SO2Na as trifluoromethyl radical source, tert-butanol peroxide (TBHP) as oxidant, 3-trifluoromethylchromone was synthesized by radical addition tandem cyclization reaction of 2-hydroxyphenyl enaminone under mild reaction conditions, and enaminone substrate has good functional tolerance.

参考文献

[1]
(a) Feng, L.; Maddox, M. M.; Alam, M. Z.; Tsutsumi, L. S.; Narula, G.; Bruhn, D. F.; Wu, X.; Sandhaus, S.; Lee, R. B.; Simmons, C. J.; Tse-Dinh, Y. C.; Hurdle, J. G.; Lee, R. E.; Sun, D. J. Med. Chem. 2014, 57, 8398.
[1]
(b) Matin, A.; Gavande, N.; Kim, M. S.; Yang, N. X.; Salam, N. K.; Hanrahan, J. R.; Roubin, R. H.; Hibbs, D. E. J. Med. Chem. 2009, 52, 6835.
[1]
(c) Zhou, T.; Shi, Q.; Lee, K. H. Tetrahedron Lett. 2010, 51, 4382.
[1]
(d) Keri, R. S.; Budagumpi, S.; Pai, R. K.; Balakrishna, R. G. Eur. J. Med. Chem. 2014, 78, 340.
[1]
(e) Lan, J. S.; Xie, S. S.; Huang, M.; Hu, Y. J.; Kong, L. Y.; Wang, X. B. MedChemComm 2015, 6, 1293.
[1]
(f) Gobbi, S.; Hu, Q.; Zimmer, C., Engel, M.; Belluti, F.; Rampa, A.; Hartmann, R. W.; Bisi, A. J. Med. Chem. 2016, 59, 2468.
[2]
(a) Moriarty, R. M.; Prakash, O. J. Heterocycl. Chem. 1985, 22, 583.
[2]
(b) Klier, L.; Bresser, T.; Nigst, T. A.; Karaghiosoff, K.; Knochel, P. J. Am. Chem. Soc. 2012, 134, 13584.
[2]
(c) Inna, V.; Shlomo R. J. Org. Chem. 2014, 79, 7261.
[2]
(d) Zhao, W. N.; Xie, P.; Bian, Z. G.; Zhou, A. H.; Ge, H. B.; Zhang, M.; Ding, Y. C.; Zheng, L. J. Org. Chem. 2015, 80, 9167.
[2]
(e) Wan, J. P.; Zhong, S.; Guo, Y.; Wei, L. Eur. J. Org. Chem. 2017, 4401.
[2]
(f) Araujo, D. R.; Lima, Y. R.; Barcellos, A. M.; Jacob, R. G.; Silva, M. S.; Perin, G. ARKIVOC 2020, 6, 276.
[3]
(a) Panja, S. K.; Maiti, S.; Bandyopadhyay, C. J. Chem. Res. 2010, 555.
[3]
(b) Akram, M. O.; Berabc, S.; Patil, N. T. Chem. Commun. 2016, 52, 12306.
[3]
(c) Joussota, J.; Schoenfeldera, A.; Larquetouxb, L.; Nicolasb, M.; Suffert, J.; Blond, G. Synthesis 2016, 48, 3364.
[3]
(d) Yokoe, I.; Maruyama, K.; Sugita, Y.; Harashida, T.; Shirataki, Y. Chem. Pharm. Bull. 1994, 42, 1697.
[3]
(e) Gudipati, R.; Kandula, V.; Raghavulu, K.; Basavaiah, K.; Yennam, S.; Behera, M. ChemistrySelect 2020, 5, 7093
[4]
(a) Hu, B.; Zhou, P.; Rao, K.; Yang, J.; Li, L.; Yan, S.; Yu, F. Tetrahedron Lett. 2018, 59, 1438.
[4]
(b) He, Z. H.; Liu, W. P.; Li, Z. P. Chem. Asian J. 2011, 6, 1340.
[4]
(c) Jiang, H. F.; Huang, W.; Yu, Y.; Yi, S. J.; Li, J. W.; Wu, W. Q. Chem. Commun. 2017, 53, 7473
[5]
(a) Zhang, X. Z.; Ge, D. L.; Chen, S. Y.; Yu, X. Q. RSC Adv. 2016, 6, 66320.
[5]
(b) Yang, Z.; Hu, L.; Cao, T.; An, L.; Li, L.; Yang, T.; Zhou, C. New J. Chem. 2019, 43, 16441.
[5]
(c) Xiang, H.; Zhao, Q.; Tang, Z.; Xiao, J.; Xia, P.; Wang, C.; Yang, C.; Chen, X.; Yang, H. Org. Lett. 2017, 19, 146.
[5]
(d) Gao, Y.; Liu, Y.; Wan, J. P. J. Org. Chem. 2019, 84, 2243.
[5]
(e) Gao, H.; Hu, B.; Dong, W. H.; Gao, X. S.; Jiang, L. L.; Xie, X. M.; Zhang, Z. G. ACS Omega 2017, 2, 3168
[6]
(a) Schlosser, M. Angew Chem., Int. Ed. 2006, 45, 5432.
[6]
(b) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
[6]
(c) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
[6]
(d) Cametti, M.; Crousse, B.; Metrangolo, P.; Milani, R.; Resnati, G. Chem. Soc. Rev. 2012, 41, 31.
[6]
(e) Wang, J.; Sanchez-Rosello, M.; Acena, J. L.; delPozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
[7]
(a) Kino, T.; Nagase, Y.; Ohtsuka, Y.; Yamamoto, K.; Uraguchi, D.; Tokuhisa, K.; Yamakawa, T. J. Fluorine Chem. 2010, 131, 98.
[7]
(b) Choi, S.; Kim, Y. J.; Kim, S. M.; Yang, J. W.; Kim, S. W.; Cho, E. J. Nat. Commun. 2014, 5, 4881.
[7]
(c) Feng, Z.; Min, Q. Q.; Zhao, H. Y.; Gu, J. W.; Zhang, X. G. Angew. Chem., Int. Ed. 2015, 54, 1270.
[7]
(d) Straathof, N. J. W.; Cramer, S. E.; Hessel, V.; Noel, T. Angew. Chem., Int. Ed. 2016, 55, 15549.
[7]
(e) Thomas, R.; Eugen, L.; Christian, K.; Oliver, R. ACS Catal. 2018, 8, 3950
[8]
(a) Satoshi, M.; Oscar, G. L.; Engle, K. M.; Stefan, V.; Katherine, W.; Gerasimos, R.; Veronique, G. Chem.-Eur. J. 2012, 18, s8583.
[8]
(b) Gao, B.; Zhao, Y. C.; Ni, C. F.; Hu, J. B. Org. Lett. 2014, 16, 102.
[8]
(c) Li, Y. W.; Lu, Y.; Qiu, G. Y. S.; Ding, Q. P. Org. Lett. 2014, 16, 4240.
[8]
(d) Ma, J. J.; Yi, W. B.; Lu, G. P.; Cai, C. Adv. Synth. Catal. 2015, 357, 3447.
[8]
(e) Gou, B. Q.; Yang, C.; Zhang, L.; Xia, W. J. Acta Chim. Sinica 2017, 75, 66. (in Chinese)
[8]
(苟宝权, 杨超, 张磊, 夏吾炯, 化学学报, 2017, 75, 66.)
[8]
(f) Kautzky, J. A.; Wang, T.; Evans, R. W.; MacMillan, D. W. C. J. Am. Chem. Soc. 2018, 140, 6522.
[8]
(g) Wang, Q.; Gao, K. C.; Zou, J. P.; Zeng, R. S. Chin. J. Org. Chem. 2018, 38, 863. (in Chinese)
[8]
(王清, 高克成, 邹建平, 曾润生, 有机化学, 2018, 38, 863.)
[8]
(h) Ge, J. Y.; Ding, Q. P.; Wang, X. H.; Peng, Y. Y. J. Org. Chem. 2020, 85, 7658.
[9]
(a) Yasu, Y.; Koike, T.; Akita, M. Chem. Commun. 2013, 49, 2037.
[9]
(b) Ge, G. C.; Huang, X. J.; Ding, C. H.; Wan, S. L.; Dai, L. X.; Hou, X. L. Chem. Commun. 2014, 50, 3048.
[9]
(c) Asano, M.; Tomita, R.; Koike, T.; Akita, M. J. Fluorine Chem. 2015, 179, 83.
[9]
(d) Tomita, R.; Yasu, Y.; Koike, T.; Akita, M. Angew. Chem., Int. Ed. 2014, 53, 7144
[10]
(a) Pandey, V. K.; Anbarasan, P. RSC Adv. 2016, 6, 18525.
[10]
(b) Ye, Y. D.; Lee, S. H.; Sanford, M. S. Org. Lett. 2011, 13, 5464.
[10]
(c) Hafner, A.; Brase, S. Adv. Synth. Catal. 2011, 353, 163044.
[10]
(d) Wu, Y. B.; Lu, G. P.; Yuan, T.; Xu, Z. B.; Wan, L.; Cai, C. Chem. Commun. 2016, 52, 13668
[11]
(a) Shen, W. G.; Wu, Q. Y.; Gong, X. Y.; Aoa, G. Z.; Liu, F. Green Chem. 2019, 21, 2983.
[11]
(b) Cao, X. H.; Pan, X. Q.; Zhou, P. J.; Zou, J. P.; Asekun, O. T. Chem. Commun. 2014, 50, 3359.
[11]
(c) Wei, W., Wen, J. W.; Yang, D. S.; Liu, X. X.; Guo, M. Y.; Dong, R. M.; Wang, H. J. Org. Chem. 2014, 79, 4225.
[11]
(d) Zhang, K.; Xu, X. H.; Qing, F. L. J. Org. Chem. 2015, 80, 7658.
[11]
(e) Yang, B.; Xu, X. H.; Qing, F. L. Org. Lett. 2015, 17, 1906.
[11]
(f) Tang, L.; Yang, Z.; Chang, X. P.; Jiao, J. C.; Ma, X. T.; Rao, W. H.; Zhou, Q. J. Org. Lett. 2018, 20, 6520.
[11]
(g) Shi, X. L.; Li, X. W.; Ma, L. N.; Shi, D. Y. Catalysts 2019, 9, 278.
[11]
(h) Wang, N.; Gu, Q. S.; Cheng, Y. F.; Li, L.; Li, Z. L.; Guo, Z.; Liu, X. Y. Chin. J. Org. Chem. 2019, 39, 200. (in Chinese)
[11]
(王娜, 顾强帅, 程永峰, 李磊, 李忠良, 郭臻, 刘心元, 有机化学, 2019, 39, 200.)
[12]
Friden-Saxin, M.; Seifert, T.; Landergren, M. R.; Suuronen, T.; Lahtela-Kakkonen, M.; Jarho, E. M.; Luthman, K. J. Med. Chem. 2012, 55, 7104.
[13]
Yu, Q.; Liu, Y. Y.; Wan, J. P. Org. Chem. Front. 2020, 7, 2770.
[14]
Bichovski, P.; Haas, T. M.; Kratzert, D.; Streuff, J. Chem.-Eur. J. 2015, 21, 2339.
文章导航

/