综述与进展

过渡金属催化氮原子导向的芳基邻位C—H键硼化反应研究进展

  • 罗欢欢 ,
  • 裴娜 ,
  • 张敬
展开
  • 武汉大学高等研究院 武汉 430000

收稿日期: 2021-03-06

  修回日期: 2021-04-02

  网络出版日期: 2021-05-08

基金资助

中央高校基本科研业务费专项资金(2042019kf0008)

Advances in Nitrogen-Directed Aromatic Compound ortho-C—H Bond Borylation Catalyzed by Transition Metals

  • Huanhuan Luo ,
  • Na Pei ,
  • Jing Zhang
Expand
  • Institute for Advanced Studies, Wuhan University, Wuhan 430000
*Corresponding author.E-mail:

Received date: 2021-03-06

  Revised date: 2021-04-02

  Online published: 2021-05-08

Supported by

Fundamental Research Funds for the Central Universities(2042019kf0008)

摘要

芳基硼化合物在合成化学、材料化学和生物医学领域都有着广泛的应用, 其合成方法一直是有机合成领域中的研究热点. 导向基团辅助过渡金属催化的C—H键硼化反应具有步骤经济性, 底物多样性, 高区域选择性的优点. 其中含氮原子导向基团底物的硼化反应引起了学者们的兴趣, 因为N, C螯合的四配位有机硼化物是重要的光电材料. 按照不同过渡金属(铱、铑、钯、钌)总结了近年来含氮原子导向的芳香化合物邻位C—H键硼化反应的进展.

本文引用格式

罗欢欢 , 裴娜 , 张敬 . 过渡金属催化氮原子导向的芳基邻位C—H键硼化反应研究进展[J]. 有机化学, 2021 , 41(8) : 2990 -3001 . DOI: 10.6023/cjoc202103013

Abstract

Aromatic boron compounds have been widely used in synthetic chemistry, materials and medicinals, and developing new methods for their synthesis has been a hot topic. Directing groups assisted C—H bond borylation catalyzed by transition metal has significant advantages in step-economy, substrates diversity and high regio-selectivity. The borylation of nitrogen-based substrates has attracted interest from researchers, because four-coordinated organoboron compounds chelated by N,C are important photoelectric materials. In this paper, the preparation of aromatic boron compounds from ortho-C—H bond borylation catalyzed by Ir, Rh, Ru, Pd assisting by directing groups containing nitrogen atoms is summarized.

参考文献

[1]
Darses, S.; Genet, J.-P. Chem. Rev. 2008, 108, 288.
[2]
Fyfe, J. W. B.; Watson, A. J. B. Chem 2017, 3, 31.
[3]
Shi, D.-F.; Wang, L.; Xia, C.-G.; Liu, C. Chin. J. Org. Chem. 2020, 40, 3605. (in Chinese)
[3]
(史敦发, 王露, 夏春谷, 刘超, 有机化学, 2020, 40, 3605.)
[4]
Wang, L.-J.; Sheng, X.-L.; Wang, J.; Zhang, Y.-H. Chin. J. Org. Chem. 2021, 41, 567. (in Chinese)
[4]
(王李娟, 盛显良, 王杰, 张玉辉, 有机化学, 2021, 41, 567.)
[5]
Kiprof, P.; Carlson, J. C.; Anderson, D. R.; Nemykin, V. N. Dalton Trans. 2013, 42, 15120.
[6]
Zou, L. Y.; Zhang, Z. L.; Ren, A. M.; Ran, X. Q.; Feng, J. K. Theor. Chem. Acc. 2010, 126, 361.
[7]
Hunt, C. D. J. Trace Elem. Med. Biol. 2012, 26, 157.
[8]
Morgan, J.; Pinhey, J. T. J. Am. Chem. Soc. 1990, 3, 715.
[9]
Wulff, G.; Lauer, M. J. Organomet. Chem. 1983, 256, 1.
[10]
Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508.
[11]
Kubota, K.; Iwamoto, H.; Ito, H. Org. Biomol. Chem. 2017, 15, 285.
[12]
Xu, Y.-L.; Fang, H. Chin. J. Org. Chem. 2018, 38, 738. (in Chinese)
[12]
(徐玉良, 方浩, 有机化学, 2018, 38, 738.)
[13]
Iqbal, S. A.; Pahl, J.; Yuan, K.; Ingleson, M. J. Chem. Soc. Rev. 2020, 49, 4564.
[14]
Li, Y.; Wu, X. F. Angew. Chem., Int. Ed. 2020, 59, 1770.
[15]
Hartwig, J. F. Chem. Soc. Rev. 2011, 40, 1992.
[16]
Ros, A.; Fernández, R.; Lassaletta, J. M. Chem. Soc. Rev. 2014, 43, 3229.
[17]
Liao, G.; Wu, Y.-J.; Shi, B.-F. Acta Chim. Sinica 2020, 78, 289. (in Chinese)
[17]
(廖港, 吴勇杰, 史炳锋, 化学学报, 2020, 78, 289.)
[18]
Zou, X.-L.; Xu, S.-M. Chin. J. Org. Chem. 2021, 41, 2610. (in Chinese)
[18]
(邹晓亮, 徐森苗, 有机化学, 2021, 41, 2610.)
[19]
Liu, L.-H.; Du, R.-R.; Xu. S.-M. Chin. J. Org. Chem. 2021, 41, 1572. (in Chinese)
[19]
(刘路华, 杜荣荣, 徐森苗, 有机化学, 2021, 41, 1572.)
[20]
Nguyen, P.; Blom, H. P.; Westcott, S. A.; Taylor, N. J.; Marder, T. B. J. Am. Chem. Soc. 1993, 115, 9329.
[21]
Waltz, K. M.; He, X.; Muhoro, C.; Hartwig, J. F. J. Am. Chem. Soc. 1995, 117, 11357.
[22]
Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890.
[23]
Wu, M.; Huang, X.-P.; Zhang, H.-B.; Li, P.-F. Chin. J. Org. Chem. 2019, 39, 3114. (in Chinese)
[23]
(吴梅, 黄新平, 张海兵, 李鹏飞, 有机化学, 2019, 39, 3114.)
[24]
Jiang, X.-L.; Hao, J.-Q.; Zhou, G.-Q.; Hou, C.-C.; Hu, F.-D. Chin. J. Org. Chem. 2019, 39, 1811. (in Chinese)
[24]
(姜晓蕾, 郝佳奇, 周国庆, 侯程程, 胡芳东, 有机化学, 2019, 39, 1811.)
[25]
Wu, Y.-J.; Shi, B.-F. Chin. J. Org. Chem. 2020, 40, 3517. (in Chinese)
[25]
(吴勇杰, 史炳锋, 有机化学, 2020, 40, 3517.)
[26]
Luo, F.-H. Chin. J. Org. Chem. 2019, 39, 3084. (in Chinese)
[26]
(罗飞华, 有机化学, 2019, 39, 3084.)
[27]
Cheng, H.-C.; Lin, J.-L.; Zhang, Y.-F.; Chen, B.; Wang, M.; Cheng, L.-H.; Ma, J.-L. Chin. J. Org. Chem. 2019, 39, 318. (in Chinese)
[27]
(程辉成, 林锦龙, 张耀丰, 陈冰, 王敏, 程丽华, 马姣丽, 有机化学, 2019, 39, 318.)
[28]
Liu, Y.-H.; Xia, Y.-N.; Shi, B.-F. Chin. J. Chem. 2020, 38, 635.
[29]
Boebel, T. A.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 7534.
[30]
Wright, S. E.; Richardson-Solorzano, S.; Stewart, T. N.; Miller, C. D.; Morris, K. C.; Daley, C. J. A.; Clark, T. B. Angew. Chem., Int. Ed. 2019, 58, 2834.
[31]
Wen, J.; Wang, D.; Qian, J.; Wang, D.; Zhu, C.; Zhao, Y.; Shi, Z. Angew. Chem., Int. Ed. 2019, 58, 2078.
[32]
Fukuda, K.; Iwasawa, N.; Takaya, J. Angew. Chem., Int. Ed. 2019, 58, 2850.
[33]
Xu, F.; Duke, O. M.; Rojas, D.; Eichelberger, H. M.; Kim, R. S.; Clark, T. B.; Watson, D. A. J. Am. Chem. Soc. 2020, 142, 11988.
[34]
Su, B.; Hartwig, J. F. Angew. Chem., Int. Ed. 2018, 57, 10163.
[35]
Sumida, Y.; Harada, R.; Sumida, T.; Hashizume, D.; Hosoya, T. Chem. Lett. 2018, 47, 1251.
[36]
Chattopadhyay, B.; Dannatt, J. E.; Andujar-De Sanctis, I. L.; Gore, K. A.; Maleczka, R. E.; Singleton, D. A.; Smith, M. R. J. Am. Chem. Soc. 2017, 139, 7864.
[37]
Mihai, M. T.; Williams, B. D.; Phipps, R. J. J. Am. Chem. Soc. 2019, 141, 15477.
[38]
Li, D.; Zhang, H.; Wang, Y. Chem. Soc. Rev. 2013, 42, 8416.
[39]
Rao, Y.; Amarne, H.; Wang, S. Chem. Rev. 2012, 256, 759.
[40]
Haque, A.; Al-Balushi, R. A.; Raithby, P. R.; Khan, M. S. Molecules 2020, 25, 2645.
[41]
Dou, C.; Liu, J.; Wang, L. Sci. China Chem. 2017, 60, 450.
[42]
Zhao, C.; Wang, J.; Jiao, J.; Huang, L.; Tang, J. J. Mater. Chem. C 2020, 8, 28.
[43]
Iverson, C. N.; Smith, M. R. J. Am. Chem. Soc. 1999, 121, 7696.
[44]
Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 390.
[45]
Ishiyama, T.; Takagi, J.; Hartwig, J. F.; Miyaura, N. Angew. Chem., Int. Ed. 2002, 41, 3056.
[46]
Ishiyama, T.; Isou, H.; Kikuchi, T.; Miyaura, N. Chem. Commun. 2010, 46, 159.
[47]
Itoh, H.; Kikuchi, T.; Ishiyama, T.; Miyaura, N. Chem. Lett. 2011, 40, 1007.
[48]
Sasaki, I.; Amou, T.; Ito, H.; Ishiyama, T. Org. Biomol. Chem. 2014, 12, 2041.
[49]
Ros, A.; Estepa, B.; Lopez-Rodriguez, R.; Alvarez, E.; Fernández, R.; Lassaletta, J. M. Angew. Chem., Int. Ed. 2011, 50, 11724.
[50]
Ros, A.; Lopez-Rodriguez, R.; Estepa, B.; Alvarez, E.; Fernández, R.; Lassaletta, J. M. J. Am. Chem. Soc. 2012, 134, 4573.
[51]
Lopez-Rodriguez, R.; Ros, A.; Fernández, R.; Lassaletta, J. M. J. Org. Chem. 2012, 77, 9915.
[52]
Roering, A. J.; Hale, L. V. A.; Squier, P. A.; Ringgold, M. A.; Wiederspan, E. R.; Clark, T. B. Org. Lett. 2012, 14, 3558.
[53]
Hale, L. V. A.; McGarry, K. A.; Ringgold, M. A.; Clark, T. B. Organometallics 2014, 34, 51.
[54]
Hale, L. V. A.; Emmerson, D. G.; Ling, E. F.; Roering, A. J.; Ringgold, M. A.; Clark, T. B. Org. Chem. Front. 2015, 2, 661.
[55]
Roosen, P. C.; Kallepalli, V. A.; Chattopadhyay, B.; Singleton, D. A.; Maleczka, R. E.; Smith, M. R. J. Am. Chem. Soc. 2012, 134, 11350.
[56]
Bisht, R.; Chattopadhyay, B. J. Am. Chem. Soc. 2016, 138, 84.
[57]
Ghaffari, B.; Preshlock, S. M.; Plattner, D. L.; Staples, R. J.; Maligres, P. E.; Krska, S. W.; Maleczka, R. E., Jr.; Smith, M. R. J. Am. Chem. Soc. 2014, 136, 14345.
[58]
Wang, G.; Liu, L.; Wang, H.; Ding, Y. S.; Zhou, J.; Mao, S.; Li, P. J. Am. Chem. Soc. 2017, 139, 91.
[59]
Gorovoy, A. S.; Gozhina, O. V.; Svendsen, J. S.; Domorad, A. A.; Tetz, G. V.; Tetz, V. V.; Lejon, T. Chem. Biol. Drug Des. 2013, 81, 408.
[60]
Andrés, P.; Ballano, G.; Calaza, M. I.; Cativiela, C. Chem. Soc. Rev. 2016, 45, 2291.
[61]
Smoum, R.; Rubinstein, A.; Dembitsky, V. M.; Srebnik, M. Chem. Rev. 2012, 112, 4156.
[62]
Wang, Y.-X.; Zhang, P.-F.; Ye, M. Chin. J. Chem. 2020, 38, 1762.
[63]
Zhan, M.; Song, P.; Jiao, J.; Li, P. Chin. J. Chem. 2020, 38, 665.
[64]
Zou, X.; Zhao, H.; Li, Y.; Gao, Q.; Ke, Z.; Xu, S. J. Am. Chem. Soc. 2019, 141, 5334.
[65]
Yang, Y.; Gao, Q.; Xu, S. Adv. Syn. Catal. 2019, 361, 858.
[66]
Kawamorita, S.; Ohmiya, H.; Hara, K.; Fukuoka, A.; Sawamura, M. J. Am. Chem. Soc. 2009, 131, 5058.
[67]
Kawamorita, S.; Ohmiya, H.; Sawamura, M. J. Org. Chem. 2010, 75, 3855.
[68]
Yamazaki, K.; Kawamorita, S.; Ohmiya, H.; Sawamura, M. Org. Lett. 2010, 12, 3978.
[69]
Kawamorita, S.; Miyazaki, T.; Ohmiya, H.; Iwai, T.; Sawamura, M. J. Am. Chem. Soc. 2011, 133, 19310.
[70]
Kawamorita, S.; Miyazaki, T.; Iwai, T.; Ohmiya, H.; Sawamura, M. J. Am. Chem. Soc. 2012, 134, 12924.
[71]
Jiang, Q.; Duan-Mu, D.; Zhong, W.; Chen, H.; Yan, H. Chem.-Eur. J. 2013, 19, 1903.
[72]
Miura, W.; Hirano, K.; Miura, M. Org. Lett. 2016, 18, 3742.
[73]
Crawford, K. M.; Ramseyer, T. R.; Daley, C. J. A.; Clark, T. B. Angew. Chem., Int. Ed. 2014, 53, 7589.
[74]
Guo, W. H.; Min, Q. Q.; Gu, J. W.; Zhang, X. Angew. Chem., Int. Ed. 2015, 54, 9075.
[75]
Frémont, P.; Marion, N.; Nolan, S. P. Coord. Chem. Rev. 2009, 253, 862.
[76]
Zhu, D.; Chen, L.; Fan, H.; Yao, Q.; Zhu, S. Chem. Soc. Rev. 2020, 49, 908.
[77]
Keske, E. C.; Moore, B. D.; Zenkina, O. V.; Wang, R.; Schatte, G.; Crudden, C. M. Chem. Commun. 2014, 50, 9883.
[78]
Zhong, L.; Zong, Z.-H.; Wang, X.-C. Tetrahedron 2019, 75, 2547.
[79]
Queval, P.; Jahier, C.; Rouen, M.; Artur, I.; Legeay, J.-C.; Falivene, L.; Toupet, L.; Crévisy, C.; Cavallo, L.; Baslé, O.; Mauduit, M. Angew. Chem., Int. Ed. 2013, 52, 14103.
[80]
Thongpaen, J.; E. Schmid, T.; Toupet, L.; Dorcet, V.; Mauduit, M.; Baslé, O. Chem. Commun. 2018, 54, 8202.
[81]
Kainz, Q. M.; Matier, C. D.; Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C. Science 2016, 351, 681.
[82]
Terrett, J. A.; Cuthbertson, J. D.; Shurtleff, V. W.; MacMillan, D. W. C. Nature 2015, 524, 330.
[83]
Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345, 433.
[84]
Thongpaen, J.; Manguin, R.; Dorcet, V.; Vives, T.; Duhayon, C.; Mauduit, M.; Baslé, O. Angew. Chem., Int. Ed. 2019, 58, 15244.
[85]
Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
[86]
He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J. Chem. Rev. 2017, 117, 8754.
[87]
Topczewski, J. J.; Sanford, M. S. Chem. Sci. 2015, 6, 70.
[88]
Davan, T.; Corcoran, E. W.; Sneddon, L. G. Organometallics 1983, 2, 1693.
[89]
Kadlecek, D. E.; Carroll, P. J.; Sneddon, L. G. J. Am. Chem. Soc. 2000, 122, 10868.
[90]
Tatsuo, I.; Kousaku, I.; Jun, T.; Norio, M. Chem. Lett. 2001, 30, 1082.
[91]
Ohmura, T.; Kijima, A.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 6070.
[92]
Dai, H. X.; Yu, J. Q. J. Am. Chem. Soc. 2012, 134, 134.
[93]
Kuninobu, Y.; Iwanaga, T.; Omura, T.; Takai, K. Angew. Chem., Int. Ed. 2013, 52, 4431.
[94]
Yoshigoe, Y.; Kuninobu, Y. Org. Lett. 2017, 19, 3450.
[95]
Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879.
[96]
Ackermann, L. Acc. Chem. Res. 2014, 47, 281.
[97]
Wang, Z.; Xie, P.; Xia, Y. Chin. Chem. Lett. 2018, 29, 47.
[98]
Fernández-Salas, J. A.; Manzini, S.; Piola, L.; Slawin, A. M.; Nolan, S. P. Chem. Commun. 2014, 50, 6782.
[99]
Okada, S.; Namikoshi, T.; Watanabe, S.; Murata, M. ChemCatChem 2015, 7, 1531.
[100]
Sarkar, S.; Kumar, N. Y.; Ackermann, L. Chem.-Eur. J. 2017, 23, 84.
[101]
Maeda, Y.; Sato, M.; Okada, S.; Murata, M. Tetrahedron Lett. 2018 59, 2537.
[102]
Yao, W.; Wang, J.; He, L.; Cao, D.; Yang, J. J. Org. Chem. 2020, 85, 10245.
文章导航

/