过渡金属催化氮原子导向的芳基邻位C—H键硼化反应研究进展
收稿日期: 2021-03-06
修回日期: 2021-04-02
网络出版日期: 2021-05-08
基金资助
中央高校基本科研业务费专项资金(2042019kf0008)
Advances in Nitrogen-Directed Aromatic Compound ortho-C—H Bond Borylation Catalyzed by Transition Metals
Received date: 2021-03-06
Revised date: 2021-04-02
Online published: 2021-05-08
Supported by
Fundamental Research Funds for the Central Universities(2042019kf0008)
罗欢欢 , 裴娜 , 张敬 . 过渡金属催化氮原子导向的芳基邻位C—H键硼化反应研究进展[J]. 有机化学, 2021 , 41(8) : 2990 -3001 . DOI: 10.6023/cjoc202103013
Aromatic boron compounds have been widely used in synthetic chemistry, materials and medicinals, and developing new methods for their synthesis has been a hot topic. Directing groups assisted C—H bond borylation catalyzed by transition metal has significant advantages in step-economy, substrates diversity and high regio-selectivity. The borylation of nitrogen-based substrates has attracted interest from researchers, because four-coordinated organoboron compounds chelated by N,C are important photoelectric materials. In this paper, the preparation of aromatic boron compounds from ortho-C—H bond borylation catalyzed by Ir, Rh, Ru, Pd assisting by directing groups containing nitrogen atoms is summarized.
[1] | Darses, S.; Genet, J.-P. Chem. Rev. 2008, 108, 288. |
[2] | Fyfe, J. W. B.; Watson, A. J. B. Chem 2017, 3, 31. |
[3] | Shi, D.-F.; Wang, L.; Xia, C.-G.; Liu, C. Chin. J. Org. Chem. 2020, 40, 3605. (in Chinese) |
[3] | (史敦发, 王露, 夏春谷, 刘超, 有机化学, 2020, 40, 3605.) |
[4] | Wang, L.-J.; Sheng, X.-L.; Wang, J.; Zhang, Y.-H. Chin. J. Org. Chem. 2021, 41, 567. (in Chinese) |
[4] | (王李娟, 盛显良, 王杰, 张玉辉, 有机化学, 2021, 41, 567.) |
[5] | Kiprof, P.; Carlson, J. C.; Anderson, D. R.; Nemykin, V. N. Dalton Trans. 2013, 42, 15120. |
[6] | Zou, L. Y.; Zhang, Z. L.; Ren, A. M.; Ran, X. Q.; Feng, J. K. Theor. Chem. Acc. 2010, 126, 361. |
[7] | Hunt, C. D. J. Trace Elem. Med. Biol. 2012, 26, 157. |
[8] | Morgan, J.; Pinhey, J. T. J. Am. Chem. Soc. 1990, 3, 715. |
[9] | Wulff, G.; Lauer, M. J. Organomet. Chem. 1983, 256, 1. |
[10] | Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508. |
[11] | Kubota, K.; Iwamoto, H.; Ito, H. Org. Biomol. Chem. 2017, 15, 285. |
[12] | Xu, Y.-L.; Fang, H. Chin. J. Org. Chem. 2018, 38, 738. (in Chinese) |
[12] | (徐玉良, 方浩, 有机化学, 2018, 38, 738.) |
[13] | Iqbal, S. A.; Pahl, J.; Yuan, K.; Ingleson, M. J. Chem. Soc. Rev. 2020, 49, 4564. |
[14] | Li, Y.; Wu, X. F. Angew. Chem., Int. Ed. 2020, 59, 1770. |
[15] | Hartwig, J. F. Chem. Soc. Rev. 2011, 40, 1992. |
[16] | Ros, A.; Fernández, R.; Lassaletta, J. M. Chem. Soc. Rev. 2014, 43, 3229. |
[17] | Liao, G.; Wu, Y.-J.; Shi, B.-F. Acta Chim. Sinica 2020, 78, 289. (in Chinese) |
[17] | (廖港, 吴勇杰, 史炳锋, 化学学报, 2020, 78, 289.) |
[18] | Zou, X.-L.; Xu, S.-M. Chin. J. Org. Chem. 2021, 41, 2610. (in Chinese) |
[18] | (邹晓亮, 徐森苗, 有机化学, 2021, 41, 2610.) |
[19] | Liu, L.-H.; Du, R.-R.; Xu. S.-M. Chin. J. Org. Chem. 2021, 41, 1572. (in Chinese) |
[19] | (刘路华, 杜荣荣, 徐森苗, 有机化学, 2021, 41, 1572.) |
[20] | Nguyen, P.; Blom, H. P.; Westcott, S. A.; Taylor, N. J.; Marder, T. B. J. Am. Chem. Soc. 1993, 115, 9329. |
[21] | Waltz, K. M.; He, X.; Muhoro, C.; Hartwig, J. F. J. Am. Chem. Soc. 1995, 117, 11357. |
[22] | Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890. |
[23] | Wu, M.; Huang, X.-P.; Zhang, H.-B.; Li, P.-F. Chin. J. Org. Chem. 2019, 39, 3114. (in Chinese) |
[23] | (吴梅, 黄新平, 张海兵, 李鹏飞, 有机化学, 2019, 39, 3114.) |
[24] | Jiang, X.-L.; Hao, J.-Q.; Zhou, G.-Q.; Hou, C.-C.; Hu, F.-D. Chin. J. Org. Chem. 2019, 39, 1811. (in Chinese) |
[24] | (姜晓蕾, 郝佳奇, 周国庆, 侯程程, 胡芳东, 有机化学, 2019, 39, 1811.) |
[25] | Wu, Y.-J.; Shi, B.-F. Chin. J. Org. Chem. 2020, 40, 3517. (in Chinese) |
[25] | (吴勇杰, 史炳锋, 有机化学, 2020, 40, 3517.) |
[26] | Luo, F.-H. Chin. J. Org. Chem. 2019, 39, 3084. (in Chinese) |
[26] | (罗飞华, 有机化学, 2019, 39, 3084.) |
[27] | Cheng, H.-C.; Lin, J.-L.; Zhang, Y.-F.; Chen, B.; Wang, M.; Cheng, L.-H.; Ma, J.-L. Chin. J. Org. Chem. 2019, 39, 318. (in Chinese) |
[27] | (程辉成, 林锦龙, 张耀丰, 陈冰, 王敏, 程丽华, 马姣丽, 有机化学, 2019, 39, 318.) |
[28] | Liu, Y.-H.; Xia, Y.-N.; Shi, B.-F. Chin. J. Chem. 2020, 38, 635. |
[29] | Boebel, T. A.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 7534. |
[30] | Wright, S. E.; Richardson-Solorzano, S.; Stewart, T. N.; Miller, C. D.; Morris, K. C.; Daley, C. J. A.; Clark, T. B. Angew. Chem., Int. Ed. 2019, 58, 2834. |
[31] | Wen, J.; Wang, D.; Qian, J.; Wang, D.; Zhu, C.; Zhao, Y.; Shi, Z. Angew. Chem., Int. Ed. 2019, 58, 2078. |
[32] | Fukuda, K.; Iwasawa, N.; Takaya, J. Angew. Chem., Int. Ed. 2019, 58, 2850. |
[33] | Xu, F.; Duke, O. M.; Rojas, D.; Eichelberger, H. M.; Kim, R. S.; Clark, T. B.; Watson, D. A. J. Am. Chem. Soc. 2020, 142, 11988. |
[34] | Su, B.; Hartwig, J. F. Angew. Chem., Int. Ed. 2018, 57, 10163. |
[35] | Sumida, Y.; Harada, R.; Sumida, T.; Hashizume, D.; Hosoya, T. Chem. Lett. 2018, 47, 1251. |
[36] | Chattopadhyay, B.; Dannatt, J. E.; Andujar-De Sanctis, I. L.; Gore, K. A.; Maleczka, R. E.; Singleton, D. A.; Smith, M. R. J. Am. Chem. Soc. 2017, 139, 7864. |
[37] | Mihai, M. T.; Williams, B. D.; Phipps, R. J. J. Am. Chem. Soc. 2019, 141, 15477. |
[38] | Li, D.; Zhang, H.; Wang, Y. Chem. Soc. Rev. 2013, 42, 8416. |
[39] | Rao, Y.; Amarne, H.; Wang, S. Chem. Rev. 2012, 256, 759. |
[40] | Haque, A.; Al-Balushi, R. A.; Raithby, P. R.; Khan, M. S. Molecules 2020, 25, 2645. |
[41] | Dou, C.; Liu, J.; Wang, L. Sci. China Chem. 2017, 60, 450. |
[42] | Zhao, C.; Wang, J.; Jiao, J.; Huang, L.; Tang, J. J. Mater. Chem. C 2020, 8, 28. |
[43] | Iverson, C. N.; Smith, M. R. J. Am. Chem. Soc. 1999, 121, 7696. |
[44] | Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 390. |
[45] | Ishiyama, T.; Takagi, J.; Hartwig, J. F.; Miyaura, N. Angew. Chem., Int. Ed. 2002, 41, 3056. |
[46] | Ishiyama, T.; Isou, H.; Kikuchi, T.; Miyaura, N. Chem. Commun. 2010, 46, 159. |
[47] | Itoh, H.; Kikuchi, T.; Ishiyama, T.; Miyaura, N. Chem. Lett. 2011, 40, 1007. |
[48] | Sasaki, I.; Amou, T.; Ito, H.; Ishiyama, T. Org. Biomol. Chem. 2014, 12, 2041. |
[49] | Ros, A.; Estepa, B.; Lopez-Rodriguez, R.; Alvarez, E.; Fernández, R.; Lassaletta, J. M. Angew. Chem., Int. Ed. 2011, 50, 11724. |
[50] | Ros, A.; Lopez-Rodriguez, R.; Estepa, B.; Alvarez, E.; Fernández, R.; Lassaletta, J. M. J. Am. Chem. Soc. 2012, 134, 4573. |
[51] | Lopez-Rodriguez, R.; Ros, A.; Fernández, R.; Lassaletta, J. M. J. Org. Chem. 2012, 77, 9915. |
[52] | Roering, A. J.; Hale, L. V. A.; Squier, P. A.; Ringgold, M. A.; Wiederspan, E. R.; Clark, T. B. Org. Lett. 2012, 14, 3558. |
[53] | Hale, L. V. A.; McGarry, K. A.; Ringgold, M. A.; Clark, T. B. Organometallics 2014, 34, 51. |
[54] | Hale, L. V. A.; Emmerson, D. G.; Ling, E. F.; Roering, A. J.; Ringgold, M. A.; Clark, T. B. Org. Chem. Front. 2015, 2, 661. |
[55] | Roosen, P. C.; Kallepalli, V. A.; Chattopadhyay, B.; Singleton, D. A.; Maleczka, R. E.; Smith, M. R. J. Am. Chem. Soc. 2012, 134, 11350. |
[56] | Bisht, R.; Chattopadhyay, B. J. Am. Chem. Soc. 2016, 138, 84. |
[57] | Ghaffari, B.; Preshlock, S. M.; Plattner, D. L.; Staples, R. J.; Maligres, P. E.; Krska, S. W.; Maleczka, R. E., Jr.; Smith, M. R. J. Am. Chem. Soc. 2014, 136, 14345. |
[58] | Wang, G.; Liu, L.; Wang, H.; Ding, Y. S.; Zhou, J.; Mao, S.; Li, P. J. Am. Chem. Soc. 2017, 139, 91. |
[59] | Gorovoy, A. S.; Gozhina, O. V.; Svendsen, J. S.; Domorad, A. A.; Tetz, G. V.; Tetz, V. V.; Lejon, T. Chem. Biol. Drug Des. 2013, 81, 408. |
[60] | Andrés, P.; Ballano, G.; Calaza, M. I.; Cativiela, C. Chem. Soc. Rev. 2016, 45, 2291. |
[61] | Smoum, R.; Rubinstein, A.; Dembitsky, V. M.; Srebnik, M. Chem. Rev. 2012, 112, 4156. |
[62] | Wang, Y.-X.; Zhang, P.-F.; Ye, M. Chin. J. Chem. 2020, 38, 1762. |
[63] | Zhan, M.; Song, P.; Jiao, J.; Li, P. Chin. J. Chem. 2020, 38, 665. |
[64] | Zou, X.; Zhao, H.; Li, Y.; Gao, Q.; Ke, Z.; Xu, S. J. Am. Chem. Soc. 2019, 141, 5334. |
[65] | Yang, Y.; Gao, Q.; Xu, S. Adv. Syn. Catal. 2019, 361, 858. |
[66] | Kawamorita, S.; Ohmiya, H.; Hara, K.; Fukuoka, A.; Sawamura, M. J. Am. Chem. Soc. 2009, 131, 5058. |
[67] | Kawamorita, S.; Ohmiya, H.; Sawamura, M. J. Org. Chem. 2010, 75, 3855. |
[68] | Yamazaki, K.; Kawamorita, S.; Ohmiya, H.; Sawamura, M. Org. Lett. 2010, 12, 3978. |
[69] | Kawamorita, S.; Miyazaki, T.; Ohmiya, H.; Iwai, T.; Sawamura, M. J. Am. Chem. Soc. 2011, 133, 19310. |
[70] | Kawamorita, S.; Miyazaki, T.; Iwai, T.; Ohmiya, H.; Sawamura, M. J. Am. Chem. Soc. 2012, 134, 12924. |
[71] | Jiang, Q.; Duan-Mu, D.; Zhong, W.; Chen, H.; Yan, H. Chem.-Eur. J. 2013, 19, 1903. |
[72] | Miura, W.; Hirano, K.; Miura, M. Org. Lett. 2016, 18, 3742. |
[73] | Crawford, K. M.; Ramseyer, T. R.; Daley, C. J. A.; Clark, T. B. Angew. Chem., Int. Ed. 2014, 53, 7589. |
[74] | Guo, W. H.; Min, Q. Q.; Gu, J. W.; Zhang, X. Angew. Chem., Int. Ed. 2015, 54, 9075. |
[75] | Frémont, P.; Marion, N.; Nolan, S. P. Coord. Chem. Rev. 2009, 253, 862. |
[76] | Zhu, D.; Chen, L.; Fan, H.; Yao, Q.; Zhu, S. Chem. Soc. Rev. 2020, 49, 908. |
[77] | Keske, E. C.; Moore, B. D.; Zenkina, O. V.; Wang, R.; Schatte, G.; Crudden, C. M. Chem. Commun. 2014, 50, 9883. |
[78] | Zhong, L.; Zong, Z.-H.; Wang, X.-C. Tetrahedron 2019, 75, 2547. |
[79] | Queval, P.; Jahier, C.; Rouen, M.; Artur, I.; Legeay, J.-C.; Falivene, L.; Toupet, L.; Crévisy, C.; Cavallo, L.; Baslé, O.; Mauduit, M. Angew. Chem., Int. Ed. 2013, 52, 14103. |
[80] | Thongpaen, J.; E. Schmid, T.; Toupet, L.; Dorcet, V.; Mauduit, M.; Baslé, O. Chem. Commun. 2018, 54, 8202. |
[81] | Kainz, Q. M.; Matier, C. D.; Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C. Science 2016, 351, 681. |
[82] | Terrett, J. A.; Cuthbertson, J. D.; Shurtleff, V. W.; MacMillan, D. W. C. Nature 2015, 524, 330. |
[83] | Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345, 433. |
[84] | Thongpaen, J.; Manguin, R.; Dorcet, V.; Vives, T.; Duhayon, C.; Mauduit, M.; Baslé, O. Angew. Chem., Int. Ed. 2019, 58, 15244. |
[85] | Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. |
[86] | He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J. Chem. Rev. 2017, 117, 8754. |
[87] | Topczewski, J. J.; Sanford, M. S. Chem. Sci. 2015, 6, 70. |
[88] | Davan, T.; Corcoran, E. W.; Sneddon, L. G. Organometallics 1983, 2, 1693. |
[89] | Kadlecek, D. E.; Carroll, P. J.; Sneddon, L. G. J. Am. Chem. Soc. 2000, 122, 10868. |
[90] | Tatsuo, I.; Kousaku, I.; Jun, T.; Norio, M. Chem. Lett. 2001, 30, 1082. |
[91] | Ohmura, T.; Kijima, A.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 6070. |
[92] | Dai, H. X.; Yu, J. Q. J. Am. Chem. Soc. 2012, 134, 134. |
[93] | Kuninobu, Y.; Iwanaga, T.; Omura, T.; Takai, K. Angew. Chem., Int. Ed. 2013, 52, 4431. |
[94] | Yoshigoe, Y.; Kuninobu, Y. Org. Lett. 2017, 19, 3450. |
[95] | Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879. |
[96] | Ackermann, L. Acc. Chem. Res. 2014, 47, 281. |
[97] | Wang, Z.; Xie, P.; Xia, Y. Chin. Chem. Lett. 2018, 29, 47. |
[98] | Fernández-Salas, J. A.; Manzini, S.; Piola, L.; Slawin, A. M.; Nolan, S. P. Chem. Commun. 2014, 50, 6782. |
[99] | Okada, S.; Namikoshi, T.; Watanabe, S.; Murata, M. ChemCatChem 2015, 7, 1531. |
[100] | Sarkar, S.; Kumar, N. Y.; Ackermann, L. Chem.-Eur. J. 2017, 23, 84. |
[101] | Maeda, Y.; Sato, M.; Okada, S.; Murata, M. Tetrahedron Lett. 2018 59, 2537. |
[102] | Yao, W.; Wang, J.; He, L.; Cao, D.; Yang, J. J. Org. Chem. 2020, 85, 10245. |
/
〈 |
|
〉 |