综述与进展

羟胺衍生物的[3,3] σ迁移反应及其应用

  • 张广宇 ,
  • 许家喜
展开
  • 北京化工大学化学学院有机化学系 化工资源有效利用国家重点实验室 北京 100029

收稿日期: 2021-03-11

  修回日期: 2021-04-11

  网络出版日期: 2021-05-08

基金资助

国家自然科学基金(21772010)

[3,3] Sigmatropic Shifts and Applications of Hydroxylamine Derivatives

  • Guangyu Zhang ,
  • Jiaxi Xu
Expand
  • State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029
*Corresponding author.E-mail:

Received date: 2021-03-11

  Revised date: 2021-04-11

  Online published: 2021-05-08

Supported by

National Natural Science Foundation of China(21772010)

摘要

[3,3] σ迁移反应作为有机化学中的经典反应, 自发现以来, 反应类型不断扩大, 且一直广泛应用于有机与药物合成等领域. 因为羟胺衍生物的N—O键强度较弱, 较易断裂, [3,3] σ迁移反应在较为温和的条件下即可进行, 得到含有羟基和氨基的复杂分子, 近年来, 该类反应引起越来越多的关注. 综述了羟胺衍生物的[3,3] σ迁移反应, 包括N-芳

本文引用格式

张广宇 , 许家喜 . 羟胺衍生物的[3,3] σ迁移反应及其应用[J]. 有机化学, 2021 , 41(8) : 3002 -3014 . DOI: 10.6023/cjoc202103022

Abstract

[3,3] σ shift is one of classic reactions in organic chemistry. Since its discovery, the reactions have been expanding to different types and widely used in the fields of organic and pharmaceutical synthesis. Because the N—O bond strength of hydroxylamine derivatives is weak and easy to break, their [3,3] σ shift can be carried out under mild conditions to afford complex molecules containing hydroxyl and amino groups. In recent years, more and more attention has been paid to these reactions. The [3,3] σ shift rearrangements of hydroxylamine derivatives, including N-aryl-O-alkenylhydroxylamines, N,O-diaryl hydroxylamines, N,O-dialkenyloxyamines, N-alkenyl-O-arylhydroxyamines, and N-alkyl-O-acylhydroxyamines are reviewed, and a new prospect for the [3,3] σ shifts of hydroxylamine derivatives and their future development are put forward.

参考文献

[1]
Sweeney, J. B. Chem. Soc. Rev. 2009, 38, 1027.
[2]
Ilardi, E. A.; Stivala, C. E.; Zakarian, A. Chem. Soc. Rev. 2009, 38, 3133.
[3]
Martín Castro, A. M. Chem. Rev. 2004, 104, 2939.
[4]
Tejedor, D.; Mendez-Abt, G.; Cotos, L.; Garcia-Tellado, F. Chem. Soc. Rev. 2013, 42, 458.
[5]
Cope, A. C.; Hardy, E. M. J. Am. Chem. Soc. 1940, 62, 441.
[6]
Malinowski, J. T.; Malow, E. J.; Johnson, J. S. Chem. Commun. 2012, 48, 7568.
[7]
Chen, B.; Mapp, A. K. J. Am. Chem. Soc. 2004, 126, 5364.
[8]
Yanagi, T.; Otsuka, S.; Kasuga, Y.; Fujimoto, K.; Murakami, K.; Nogi, K.; Yorimitsu, H.; Osuka, A. J. Am. Chem. Soc. 2016, 138, 14582.
[9]
Huang, X.; Maulide, N. J. Am. Chem. Soc. 2011, 133, 8510.
[10]
Kaldre, D.; Maryasin, B.; Kaiser, D.; Gajsek, O.; Gonzalez, L.; Maulide, N. Angew. Chem., Int. Ed. 2017, 56, 2212.
[11]
Boekelheide, V.; Linn, W. J. Am. Chem. Soc. 1954, 76, 1286.
[12]
Lagiakos, H. R.; Aguilar, M.-I.; Perlmutter, P. J. Org. Chem. 2009, 74, 8001.
[13]
Figueira, V. B.; Esqué, A. G.; Varala, R.; González-Bello, C.; Prabhakar, S.; Lobo, A. M. Tetrahedron Lett. 2010, 51, 2029.
[14]
Yang, Z. H.; Hou, S. L.; He, W.; Cheng, B. X.; Jiao, P.; Xu, J. X. Tetrahedron 2016, 72, 2186.
[15]
Hou, S. L.; Li, X. Y.; Xu, J. X. Org. Biomol. Chem. 2014, 12, 4952.
[16]
Xu, J. X. Curr. Org. Synth. 2017, 14, 511.
[17]
Shang, L.; Chang, Y. H.; Luo, F.; He, J. N.; Huang, X.; Zhang, L.; Kong, L. C.; Li, K. X.; Peng, B. J. Am. Chem. Soc. 2017, 139, 4211.
[18]
Liu, G. Y.; Hou, S. L.; Xu, J. X. Org. Biomol. Chem. 2019, 17, 10088.
[19]
Chen, M. Y.; Liang, Y. C.; Dong, T. T.; Liang, W. J.; Liu, Y. P.; Zhang, Y. G.; Huang, X.; Kong, L. C.; Wang, J. X.; Peng, B. Angew. Chem., Int. Ed. 2021, 60, 2339.
[20]
Sousa, E. S. F. C.; Van, N. T.; Wengryniuk, S. E. J. Am. Chem. Soc. 2020, 142, 64.
[21]
Hori, M.; Guo, J. D.; Yanagi, T.; Nogi, K.; Sasamori, T.; Yorimitsu, H. Angew. Chem., Int. Ed. 2018, 57, 4663.
[22]
Bartoli, G.; Palmieri, G.; Bosco, M.; Dalpozzo, R. Tetrahedron Lett. 1989, 30, 2129.
[23]
Bosco, M.; Dalpozzo, R.; Bartoli, G.; Palmieri, G.; Petrini, M. J. Chem. Soc., Perkin Trans. 2 1991, 657.
[24]
Bartoli, G.; Dalpozzo, R.; Nardi, M. Chem. Soc. Rev. 2014, 43, 4728.
[25]
Yuan, H. R.; Guo, L. R.; Liu, F. T.; Miao, Z. C.; Feng, L.; Gao, H. Y. ACS Catal. 2019, 9, 3906.
[26]
Lovato, K.; Bhakta, U.; Ng, Y. P.; Kürti, L. Org. Biomol. Chem. 2020, 18, 3281.
[27]
Chan, D. M.; Monaco, K. L.; Wang, R.-P.; Winters, M. P. Tetrahedron Lett. 1998, 39, 2933.
[28]
Hosomi, A.; Sakurai, H. Tetrahedron Lett. 1976, 17, 1295.
[29]
Carreira, E. M.; Lee, W.; Singer, R. A. J. Am. Chem. Soc. 1995, 117, 3649.
[30]
Singer, R. A.; Carreira, E. M. J. Am. Chem. Soc. 1995, 117, 12360.
[31]
Vallavoju, N.; Selvakumar, S.; Jockusch, S.; Sibi, M. P.; Sivaguru, J. Angew. Chem., Int. Ed. 2014, 53, 5604.
[32]
Bianchi, L.; Dell'Erba, C.; Maccagno, M.; Mugnoli, A.; Novi, M.; Petrillo, G.; Severi, E.; Tavani, C. Eur. J. Org. Chem. 2004, 2004, 3566.
[33]
Gao, H.; Ess, D. H.; Yousufuddin, M.; Kurti, L. J. Am. Chem. Soc. 2013, 135, 7086.
[34]
Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2007, 120, 215.
[35]
Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.
[36]
Guo, L.; Liu, F.; Wang, L.; Yuan, H.; Feng, L.; Kurti, L.; Gao, H. Org. Lett. 2019, 21, 2894.
[37]
Forkosh, H.; Vershinin, V.; Reiss, H.; Pappo, D. Org. Lett. 2018, 20, 2459.
[38]
Patel, D. C.; Breitbach, Z. S.; Woods, R. M.; Lim, Y.; Wang, A.; Foss, F. W., Jr.; Armstrong, D. W. J. Org. Chem. 2016, 81, 1295.
[39]
Yuan, H.; Du, Y.; Liu, F.; Guo, L.; Sun, Q.; Feng, L.; Gao, H. Chem. Commun. 2020, 56, 8226.
[40]
Zhang, J. W.; Qi, L. W.; Li, S. Y.; Xiang, S.-H.; Tan, B. Chin. J. Chem. 2020, 38, 1503.
[41]
Guo, L. R.; Liu, F. T.; Wang, L. Y.; Yuan, H. R.; Feng, L.; Lu, H. F.; Gao, H. Y. Org. Chem. Front. 2020, 9, 1077.
[42]
Wang, M.; Liu, Y.; Wang, L. Y.; Lu, H.F; Feng, L.; Gao, H. Y. Adv. Synth. Catal. 2021, 363, 1733.
[43]
Shirakawa, S.; Wu, X.; Maruoka, K. Angew. Chem., Int. Ed. 2013, 52, 14200.
[44]
Lu, S.; Ng, S. V. H.; Lovato, K.; Ong, J. Y.; Poh, S. B.; Ng, X. Q.; Kurti, L.; Zhao, Y. Nat. Commun. 2019, 10, 3061.
[45]
Lu, S.; Poh, S. B.; Zhao, Y. Angew. Chem., Int. Ed. 2014, 53, 11041.
[46]
Yang, G.; Guo, D.; Meng, D.; Wang, J. Nat. Commun. 2019, 10, 3062.
[47]
Lu, S.; Poh, S. B.; Rong, Z. Q.; Zhao, Y. Org. Lett. 2019, 21, 6169.
[48]
Vallavoju, N.; Selvakumar, S.; Jockusch, S.; Prabhakaran, M. T.; Sibi, M. P.; Sivaguru, J. Adv. Synth. Catal. 2014, 356, 2763.
[49]
He, R. D.; Li, C. L.; Pan, Q. Q.; Guo, P.; Liu, X. Y.; Shu, X. Z. J. Am. Chem. Soc. 2019, 141, 12481.
[50]
Son, J.; Reidl, T. W.; Kim, K. H.; Wink, D. J.; Anderson, L. L. Angew. Chem., Int. Ed. 2018, 57, 6597.
[51]
Chellat, M. F.; Riedl, R. Angew. Chem., Int. Ed. 2017, 56, 13184.
[52]
Alshreimi, A. S.; Zhang, G.; Reidl, T. W.; Pena, R. L.; Koto, N. G.; Islam, S. M.; Wink, D. J.; Anderson, L. L. Angew. Chem., Int. Ed. 2020, 59, 15244.
[53]
Xu, J. X. Univ. Chem. 2006, 21(4), 40. (in Chinese)
[53]
(许家喜, 大学化学, 2006, 21(4), 40.)
[54]
Singh, G. S.; Desta, Z. Y. Chem Rev. 2012, 112, 6104.
[55]
Chan, S. T.; Pearce, A. N.; Januario, A. H.; Page, M. J.; Kaiser, M.; McLaughlin, R. J.; Harper, J. L.; Webb, V. L.; Barker, D.; Copp, B. R. J. Org. Chem. 2011, 76, 9151.
[56]
Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748.
[57]
Ochiai, E. J. Org. Chem. 1953, 18, 534.
[58]
(a) House, H. O.; Richey, F. A. J. Org. Chem. 1969, 34, 1430.
[58]
(b) Beshara, C. S.; Hall, A.; Jenkins, R. L.; Jones, T. C.; Parry, R. T.; Thomas, S. P.; Tomkinson, N. C. Chem. Commun. 2005, 1478.
[59]
Kokuev, A. O.; Antonova, Y. A.; Dorokhov, V. S.; Golovanov, I. S.; Nelyubina, Y. V.; Tabolin, A. A.; Sukhorukov, A. Y.; Ioffe, S. L. J. Org. Chem. 2018, 83, 11057.
[60]
Marenich, A. V.; Jerome, S. V.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2012, 8, 527.
[61]
Breuning, M.; Ha?user, T.; Tanzer, E.-M. Org. Lett. 2009, 11, 4032.
[62]
Adam, W.; Boland, W.; Hartmann-Schreier, J.; Humpf, H.-U.; Lazarus, M.; Saffert, A.; Saha-Möller, C. R.; Schreier, P. J. Am. Chem. Soc. 1998, 120, 11044.
[63]
Adam, W.; Lazarus, M.; Saha-Mǒller, C. R.; Schreier, P. Tetrahedron: Asymmetry 1996, 7, 2287.
[64]
Takeda, N.; Arisawa, N.; Miyamoto, M.; Kobori, Y.; Shinada, T.; Miyata, O.; Ueda, M. Org. Chem. Front. 2019, 6, 3721.
[65]
Verbrugghen, T.; Cos, P.; Maes, L.; Van Calenbergh, S. J. Med. Chem. 2010, 53, 5342.
[66]
Pradere, U.; Garnier-Amblard, E. C.; Coats, S. J.; Amblard, F.; Schinazi, R. F. Chem. Rev. 2014, 114, 9154.
[67]
Hecker, S. J.; Erion, M. D. J. Med. Chem. 2008, 51, 2328.
[68]
Yang, Y.; Qu, C.; Chen, X.; Sun, K.; Qu, L.; Bi, W.; Hu, H.; Li, R.; Jing, C.; Wei, D.; Wei, S.; Sun, Y.; Liu, H.; Zhao, Y. Org. Lett. 2017, 19, 5864.
[69]
Ramirez, F.; Marecek, J. F. Synthesis 1985, 449.
[70]
Koser, G. F.; Lodaya, J. S.; Ray, D. G.; Kokil, P. B. J. Am. Chem. Soc. 1988, 110, 2987.
[71]
Khan, S.; Battula, S.; Ahmed, Q. N. Tetrahedron 2016, 72, 4273.
文章导航

/