三组分反应高效合成螺[环戊烷-1,3'-吲哚啉]衍生物
收稿日期: 2021-03-21
修回日期: 2021-04-14
网络出版日期: 2021-05-14
基金资助
国家自然科学基金(21572196); 江苏高校优势学科建设工程资助项目
Three-Component Reaction for Efficient Synthesis of Functionalized Spiro[cyclopentane-1,3'-indolines]
Received date: 2021-03-21
Revised date: 2021-04-14
Online published: 2021-05-14
Supported by
National Natural Science Foundation of China(21572196); Priority Academic Program Development of Jiangsu Higher Education Institutions
烷基异氰酸酯、丁炔二酸二酯(丙炔酸酯)和3-苯甲酰亚甲基-2-吲哚酮在甲苯中回流反应, 高产率地生成螺[环戊烷-1,3'-吲哚啉]衍生物. 然而, 含有游离氨基的3-苯甲酰亚甲基-2-吲哚酮参加反应时, 未取代的氨基可与另一分子丁炔二酸二酯及烷基异氰酸酯继续反应形成含有氨基取代的氮杂-1,3-二烯支链的螺[环戊烷-1,3'-吲哚啉]衍生物. 另一方面, 3-芳亚甲基吲哚-2-酮参与三组分反应时, 仅有游离氨基参与反应, 生成2-(2-氧吲哚-1-基)-3-[(烷基亚氨基)亚甲基]丁酸酯. 发现两种游离氨基参与多组分反应时, 分别形成了含有C2-取代的1-氮杂-1,3-丁二烯(C=C—C=NR)和C4-取代的1-氮杂-1,2-丁二烯(C—C=C=NR)结构单元的吲哚酮衍生物.
关键词: 异氰酸酯; 丁炔二酸二酯; 3-苯甲酰亚甲基吲哚酮; 螺[环戊烷-1,3'-吲哚啉]; 多组分反应
马蔚青 , 韩莹 , 孙晶 , 颜朝国 . 三组分反应高效合成螺[环戊烷-1,3'-吲哚啉]衍生物[J]. 有机化学, 2021 , 41(8) : 3180 -3191 . DOI: 10.6023/cjoc202103034
The three-component reaction of alkylisocyanide, dialkyl acetylenedicarboxylate (alkyl propiolate) and 3-phenacylideneoxindole in refluxing toluene afforded the functionalized spiro[cyclopentane-1,3'-indolines] in satisfactory yields. However, the similar reaction of 3-phenacylideneoxindoles with unsubstituted NH group resulted in spiro[cyclopentane-1,3'-indolines] with additional aza-buta-1,3-diene scaffold. On the other hand, the three-component reactions with 3-arylideneoxindolin- 2-ones only gave 2-(2-oxoindolin-1-yl)-3-((alkylimino)methylene)succinates. It was also interesting to find that the reaction of free amino group in two kinds of functionalized 3-methyleneoxindoles with alkylisocyanide and dialkyl acetylenedicarboxylate selectively gave C2-substituted 1-aza-buta-1,3-diene (C=C—C=NR) or C4-substituted 1-aza-buta-1,2-diene (C—C=C=NR) scaffold in the molecules.
[1] | (a) Yang, Y. T.; Zhu, J. F., Liao, G. C.; Xu, H. J.; Yu, B. Med. Chem. 2018, 25, 2233. |
[1] | (b) Ye, N.; Chen, H. Y.; Wold, E. A.; Shi, P. Y.; Zhou, J. ACS Infect. Dis. 2016, 2, 382. |
[1] | (c) Yu, B.; Yu, D. Q.; Liu, H. M. Eur. J. Med. Chem. 2015, 97, 673. |
[1] | (d) Yu, B.; Yu, Z. Q.; Qi, P. P.; Yu, D. Q.; Liu, H. M. Eur. J. Med. Chem. 2015, 95, 35. |
[1] | (e) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748. |
[2] | (a) Singh, G. S.; Desta, Z. Y. Chem. Rev. 2012, 112, 6104. |
[2] | (b) Hong, L.; Wang, R. Adv. Synth. Catal. 2013, 355, 1023. |
[2] | (c) Liu, Y.; Wang, H.; Wan, J. P. Asian, J. J. Org. Chem. 2013, 2, 374. |
[2] | (d) Abdukader, A.;, Zhang, Y. H.; Zhang, Z. P.; Liu, C. J. Chin. J. Org. Chem. 2016, 36, 875. (in Chinese) |
[2] | ( 阿布力米提·阿布都卡德尔, 张永红, 张增鹏, 刘晨江, 有机化学, 2016, 36, 875.) |
[2] | (e) Lin, Y.; Du, D. M. Chin. J. Org. Chem. 2020, 40, 3214. (in Chinese) |
[2] | (林晔, 杜大明, 有机化学, 2020, 40, 3214.) |
[2] | (f) Zhao, S.; Li, C. P.; Xu, B.; Liu, H. Chin. J. Org. Chem. 2020, 40, 1549. (in Chinese) |
[2] | (赵森, 李淳朴, 许斌, 柳红, 有机化学, 2020, 40, 1549.) |
[2] | (g) Zhang, D. Q.; Liua, X.; Pang, X. J.; Liu, H. M.; Zhang, Q. R. Chin. J. Org. Chem. 2021, 41, 267. (in Chinese) |
[2] | (张丹青, 柳旭, 庞晓静, 刘宏民, 张秋荣, 有机化学, 2021, 41, 267.) |
[3] | (a) Cheng, D. Q.; Ishihara, Y.; Tan, B.; Barbas, C. F. ACS Catal. 2014, 4, 743. |
[3] | (b) Mei, G. J.; Shi, F. Chem. Commun. 2018, 54, 6607. |
[3] | (c) Boddy, A. J.; Bull, J. A. Org. Chem. Front 2021, 8, 1026. |
[3] | (d) Luo, J. H.; Geng, W. S.; Cao, S. X.; He, Z. J. Chin. J. Org. Chem. 2020, 40, 40. (in Chinese) |
[3] | (罗京华, 耿玮笙, 曹仕轩, 贺峥杰, 有机化学, 2020, 40, 40.) |
[3] | (e) Guo, X.; Guo, Y. J.; Kong, D. Z.; Lu, H. J.; Hua, Y. Z.; Wang, M. C. Chin. J. Org. Chem. 2020, 40, 1999. (in Chinese) |
[3] | (郭欣, 郭亚军, 孔德志, 卢会杰, 华远照, 王敏灿, 有机化学, 2020, 40, 1999.) |
[4] | (a) Zhu, J. Eur. J. Org. Chem. 2003, 1133. |
[4] | (b) Lygin, A. V.; Meijere, A. Angew. Chem., Int. Ed. 2010, 49, 9094. |
[4] | (c) Gulevich, A. V.; Zhdanko, A. G.; Orru, Romano V. A.; Nenajdenko, Valentine G. Chem. Rev. 2010, 110, 5235. |
[5] | (a) Dömling, A; Huang, Y. J. Synthesis 2010, 17, 2859. |
[5] | (b) Dömling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168. |
[5] | (c) Wang, W.; Dömling, A. J. Comb. Chem. 2009, 11, 403. |
[6] | (a) Nair, V.; Rajesh, C.; Vinod, A. U.; Bindu, S.; Sreekanth, A. R.; Mathen, J. S.; Balagopal, L. Acc. Chem. Res. 2003, 36, 899. |
[6] | (b) Qiu, G.; Ding, Q.; Wu, J. Chem. Soc. Rev. 2013, 42, 5257. |
[7] | (a) Estevez, V.; Villacampa, M.; Menendez, J. C. Chem. Soc. Rev. 2014, 43, 4633. |
[7] | (b) Wan, J. P.; Liu, Y. RSC Adv. 2012, 2, 9763. |
[7] | (c) Wang, F.; Wei, T. Q.; Xu, P.; Wang, S. Y.; Ji, S. J. Chin. Chem. Lett. 2019, 30, 379. |
[7] | (d) Yan, L. J.; Yan, Y. X.; Chen, X. B.; Wang, Y. C. Chin. J. Org. Chem. 2020, 40, 856. (in Chinese) |
[7] | (严丽君, 闫玉鑫, 陈雪冰, 王永超, 有机化学, 2020, 40, 856.) |
[7] | (e) Wang, Y. Y.; Liu, Y. Y. Acta Chim. Sinica 2019, 77, 418. (in Chinese) |
[7] | (王昱赟, 刘云云, 化学学报, 2019, 77, 418.) |
[7] | (f) Yang, L.; Wan, J. P. Green Chem. 2020, 22, 3074. |
[7] | (g) Liu, B. Y.; Xu, X. J.; Huang, L. L.; Feng, H. D. Chin. J. Org. Chem. 2020, 40, 1290. (in Chinese) |
[7] | (刘博瑜, 徐仙君, 黄立梁, 冯煌迪, 有机化学, 2020, 40, 1290.) |
[8] | (a) Sadjadi, S.; Heravi, M. M.; Nazari, N. RSC Adv. 2016, 6, 53203. |
[8] | (b) Khan, I.; Zaib, S.; Ibrar, A. Org. Chem. Front. 2020, 7, 3734. |
[8] | (c) Rostamnia, S. RSC Adv. 2015, 5, 97044. |
[9] | (a) Safaei, H. R.; Dehbozorgi, F. RSC Adv. 2016, 6, 26783. |
[9] | (b) Wang, H. Y.; Bao, M.; Jiang, B.; Li, L. RSC Adv. 2016, 6, 6459. |
[9] | (c) Gao, Q.; Hao, W. J.; Liu, F.; Tu, S. J.; Wang, S. L.; Li, G. G.; Jiang, B. Chem. Commun. 2016, 52, 900. |
[10] | (a) Yavari, I.; Arab-Salmanabadi, S.; Aminkhani, A. Chin. Chem. Lett. 2012, 23, 49. |
[10] | (b) Baharfar, R.; Jaafari, L.; Azimi, R. Chin. Chem. Lett. 2011, 22, 943. |
[10] | (c) Mohtat, B.; Djahaniani, H.; Yavari, I.; Jam, S. A. Chin. Chem. Lett. 2011, 22, 771 |
[10] | (d) Adiba, M.; Mohammadia, B.; Sheikhia, E.; Bijanzadeh, H. R. Chin. Chem. Lett. 2011, 22, 314. |
[11] | (a) Neochoritis, C. G.; Stotani, S.; Misshra, B.; Dömling, A. Org. Lett. 2015, 17, 2002. |
[11] | (b) Tang, T.; Fei, X. D.; Ge, Z. Y.; Chen, Z.; Zhu, Y. M.; Ji, S. J. J. Org. Chem. 2013, 78, 3170. |
[11] | (c) Cao, M.; Fang, Y. L.; Wang, Y. C.; Xu, X. J.; Xi, Z. W.; Tang, S. ACS Comb. Sci. 2020, 22, 268. |
[12] | (a) Haung, J. Y.; Barve, I. J.; Sun, C. M. Org. Biomol. Chem. 2019, 17, 3040. |
[12] | (b) Zakharova, E. A.; Shmatova, O. I.; Kutovaya, I. V.; Khrustalev, V. N.; Nenajdenko, V. G. Org. Biomol. Chem. 2019, 17, 3433. |
[12] | (c) Kurva, M.; Kerim, M. D.; Gamez-Montano, R.; El Kaim, L. Org. Biomol. Chem. 2019, 17, 9655. |
[12] | (d) Xi, Z. W.; He, Y.; Liu, L. Q.; Wang, Y. C. Org. Biomol. Chem. 2020, 18, 8089. |
[13] | (a) Ramezanpour, S.; Rezaei, M. N.; Vaezghaemi, A.; Frank, R. New J. Chem. 2018, 42, 17533. |
[13] | (b) Atar, A. B.; Kang, J. M.; Jadhav, A. H. New J. Chem. 2020, 44, 3241. |
[13] | (c) Alavinia, S.; Ghorbani-Vaghei, R. New J. Chem. 2020, 44, 13062. |
[13] | (d) Li, S. S.; Zeng, G.; Xing, X. Q.; Yang, Z. H.; Ma, F. Y.; Li, B. X.; Cheng, W. Y.; Zhang, J. K.; He, R. Y. New J. Chem. 2021, 45, 1834. |
[14] | (a) Sun, J.; Sun, Y.; Gong, H.; Xie, Y. J.; Yan, C. G. Org. Lett. 2012, 14, 5172. |
[14] | (b) Sun, J.; Xie, Y. J.; Yan, C. G. J. Org. Chem. 2013, 78, 8354. |
[14] | (c) Gao, H.; Sun, J.; Yan, C. G. J. Org. Chem. 2014, 79, 4131. |
[14] | (d) Han, Y.; Sheng, Y. J.; Yan, C. G. Org. Lett. 2014, 16, 2654. |
[14] | (e) Sun, J.; Chen, L.; Gong, H.; Yan, C. G. Org. Biomol. Chem. 2015, 13, 5905. |
[14] | (f) Chen, L.; Sun, J.; Xie, J.; Yan, C. G. Org. Biomol. Chem. 2016, 14, 6497. |
[15] | (a) Shi, R. G.; Yan, C. G. Chin. Chem. Lett. 2016, 27, 575. |
[15] | (b) Wu, P.; Gao, H.; Sun, J.; Yan, C. G. Chin. Chem. Lett. 2017, 28, 329. |
[15] | (c) Yang, R. Y.; Sun, J.; Tao, Y.; Sun, Q.; Yan, C. G. J. Org. Chem. 2017, 82, 13277. |
[15] | (d) Yang, R. Y.; Sun, J., Sun, Q.; Yan, C. G. J. Org. Chem. 2018, 83, 5909. |
[15] | (e) Wang, D. Q.; Sun, J.; Yan, C. G. ChemistrySelect 2019, 4, 10550. |
[15] | (f) Sun, J.; Yang, R. Y.; Zhan, S. C.; Yan, C. G. ChemistrySelect 2019, 4, 10100. |
[15] | (g) Ye, R.; Yan, C. G. Eur. J. Org. Chem. 2019, 5882. |
[16] | (a) Sun, J.; Zhang, Y.; Zhang, R. G.; Yan, C. G. Org. Biomol. Chem. 2019, 17, 3978. |
[16] | (b) Cao, J.; Yang, F.; Sun, J.; Huang, Y.; Yan, C. G. J. Org. Chem. 2019, 84, 622. |
[16] | (c) Zhan, S. C.; Sun, J.; Liu, R. Z.; Yan, C. G. Org. Biomol. Chem. 2020, 18, 163. |
[16] | (d) Zhu, M. J.; Han, Y.; Liu, C. Z.; Ma, W. Q.; Yan, C. G. Chin. Chem. Lett. 2020, 31, 1554. |
[16] | (e) Sun, J.; Cao, J.; Han, Y.; Yan, C. G. Chin. J. Org. Chem. 2020, 40, 4122. (in Chinese) |
[16] | (孙晶, 曹鋆, 韩莹, 颜朝国, 有机化学, 2020, 40, 4122.) |
[17] | Xu, T. T.; Wang, S. Y.; Ji, S. J. Chin. J. Org. Chem. 2006, 26, 1414. (in Chinese) |
[17] | (徐天图, 汪顺义, 纪顺俊, 有机化学, 2006, 26, 1414.) |
[18] | (a) Sarvary, A.; Shaabani, S.; Ghanji, N.; Shaabani, A. J. Sulfur Chem. 2015, 36, 117. |
[18] | (b) Sarvary, A.; Shaabani, S.; Shaabani, A.; Ng, S. W. Tetrahedron Lett. 2011, 52, 5930. |
[18] | (c) Alizadeh, A.; Ahmadi, M.; Monatsh. Chem. 2011, 142, 1249. |
/
〈 |
|
〉 |