基于氧化[3+2]环加成反应合成二氢苯并呋喃类天然产物
收稿日期: 2021-03-26
修回日期: 2021-04-21
网络出版日期: 2021-05-14
基金资助
国家自然科学基金(21772078); 国家自然科学基金(22071200); 四川省科技计划(2020JDRC0021); 中央高校基本科研业务费专项资金(2682020CX55)
Advances on the Synthesis of Natural Products with Dihydrobenzofuran Skeleton via Oxidative [3+2] Cycloadditions
Received date: 2021-03-26
Revised date: 2021-04-21
Online published: 2021-05-14
Supported by
National Natural Science Foundation of China(21772078); National Natural Science Foundation of China(22071200); Science and Technology Department of Sichuan Province(2020JDRC0021); Fundamental Research Funds for the Central Universities(2682020CX55)
二氢苯并呋喃结构单元广泛存在于生物碱及萜类等多种天然产物中, 这些天然产物大多具有良好的生物活性和药用价值. 因此, 近年来有关具有二氢苯并呋喃环骨架的天然产物全合成工作不断涌现. 综述了近十多年来氧化[3+2]环加成反应在构建二氢苯并呋喃环骨架及各类天然产物全合成方面的应用进展.
关键词: 氧化[3+2]环加成; 二氢苯并呋喃; 天然产物; 全合成; 仿生合成
赵军 , 肖检 , 王雅雯 , 彭羽 . 基于氧化[3+2]环加成反应合成二氢苯并呋喃类天然产物[J]. 有机化学, 2021 , 41(8) : 2933 -2945 . DOI: 10.6023/cjoc202103048
Dihydrobenzofuran structure units widely exist in a variety of natural products, such as alkaloids and terpenes. The total synthesis of natural products containing dihydrobenzofuran skeleton has thus emerged in recent years, because of their good biological activities and medicinal value. The application progress of oxidative [3+2] cycloaddition in the construction of dihydrobenzofuran ring skeleton and the total synthesis of various natural products in recent ten years was reviewed.
[1] | Zhang, H.; Qiu, S.; Tamez, P.; Tan, G. T.; Aydogmus, Z.; Hung, N. V.; Cuong, N. M.; Angerhofer, C.; Soejarto, D. D.; Pezzuto, J. M.; Fong, H. H. S. Pharm. Biol. 2002, 40, 221. |
[2] | Wu, Q. X.; Crews, M. S.; Draskovic, M.; Sohn, J.; Johnson, T. A.; Tenney, K.; Valeriote, F. A.; Yao, X. J.; Bjeldanes, L. F.; Crews, P. Org. Lett. 2010, 12, 4458. |
[3] | (a) Liu, H.-X.; Chen, K.; Liu, Y.; Liu, C.; Wu, J.-W.; Xu, Z.-F.; Tan, H.-B.; Qiu, S.-X. Fitoterapia 2016, 115, 142. |
[3] | (b) Cao, J.-Q.; Tian, H.-Y.; Li, M.-M.; Zhang, W.; Wang, Y.; Wang, L.; Ye, W.-C. J. Nat. Prod. 2018, 81, 57. |
[3] | (c) Wu, L.; Zhang, Y.-L.; Wang, X.-B.; Zhang, Y.-M.; Yang, M.-H.; Luo, J.; Kong, L.-Y. Tetrahedron 2017, 73, 1105. |
[4] | Laurita, T.; D’Orsi, R.; Chiummiento, L.; Funicello, M.; Lupattelli, P. Synthesis 2020, 52, 1451. |
[5] | Cui, N.; Zhao, Y.; Wang, Y. Chin. J. Org. Chem. 2017, 37, 20. (in Chinese) |
[5] | (崔娜, 赵宇, 王云侠, 有机化学, 2017, 37, 20.) |
[6] | Dohi, T.; Toyoda, Y.; Nakae, T.; Koseki, D.; Kubo, H.; Kamitanaka, T.; Kita, Y. Heterocycles 2015, 90, 631. |
[7] | Chen, Z.; Pitchakuntla, M.; Jia, Y. Nat. Prod. Rep. 2019, 36, 666. |
[8] | (a) Lindquist, N.; Fenical, W.; Van Duyne, G. D.; Clardy, J. J. Am. Chem. Soc. 1991, 113, 2303. |
[8] | (b) Burgett, A. W. G.; Li, Q. Y.; Wei, Q.; Harran, P. G. Angew. Chem., Int. Ed. 2003, 42, 4961. |
[9] | Zhao, J.-C.; Yu, S.-M.; Liu, Y.; Yao, Z.-J. Org. Lett. 2013, 15, 4300. |
[10] | (a) Anderton, N.; Cockrum, P. A.; Colegate, S. M.; Edgar, J. A.; Flower, K.; Gardner, D.; Willing, R. I. Phytochemistry 1999, 51, 153. |
[10] | (b) Tomakinian, T.; Guillot, R.; Kouklovsky, C.; Vincent, G. Angew. Chem., Int. Ed. 2014, 53, 11881. |
[11] | Li, L.; Yuan, K.; Jia, Q.; Jia, Y. Angew. Chem., Int. Ed. 2019, 58, 6074. |
[12] | (a) Rogers, E. F.; Snyder, H. R.; Fischer, R. F. J. Am. Chem. Soc. 1952, 74, 1987. |
[12] | (b) Nicolaou, K. C.; Dalby, S. M.; Li, S.; Suzuki, T.; Chen, D. Y.-K. Angew. Chem., Int. Ed. 2009, 48, 7616. |
[13] | Sun, D.; Zhao, Q.; Li, C. Org. Lett. 2011, 13, 5302. |
[14] | Liang, K.; Yang, J.; Tong, X.; Shang, W.; Pan, Z.; Xia, C. Org. Lett. 2016, 18, 1474. |
[15] | (a) Sato, H.; Kawagishi, H.; Nishimura, T.; Yoneyama, S.; Yoshimoto, Y.; Sakamura, S.; Furusaki, A.; Katsuragi, S.; Matsumoto, T. Agric. Biol. Chem. 1985, 49, 2969. |
[15] | (b) Liang, K.; Wu, T.; Xia, C. Org. Biomol. Chem. 2016, 14, 4690. |
[16] | (a) Sakoulas, G.; Nam, S.-J.; Loesgen, S.; Fenical, W.; Jensen, P. R.; Nizet, V.; Hensler, M. PLoS One 2012, 7, e29439. |
[16] | (b) Meier, R.; Strych, S.; Trauner, D. Org. Lett. 2014, 16, 2634. |
[17] | (a) Yuan, Y. F.; Feng, Y.; Ren, F. X.; Niu, S. B.; Liu, X. Z.; Che, Y. S. Org. Lett. 2013, 15, 6050. |
[17] | (b) Qiao, C.; Zhang, W.; Han, J.-C.; Li, C.-C. Org. Lett. 2016, 18, 4932. |
[18] | Guo, Y.; Zhang, Y.; Xiao, M.; Xie, Z. Org. Lett. 2018, 20, 2509. |
[19] | Dethe, D. H.; Nirpal, A. K. Org. Biomol. Chem. 2019, 17, 7507. |
[20] | (a) Langcake, P.; Pryce, R. J. Experientia 1977, 33, 151. |
[20] | (b) Sako, M.; Hosokawa, H.; Ito, T.; Iinuma, M. J. Org. Chem. 2004, 69, 2598. |
[21] | (a) Hada, S.; Hattori, M.; Tezuka, Y.; Kikuchi, T.; Namba, T. Phytochemistry 1988, 27, 563. |
[21] | (b) Hattori, M.; Yang, X.-W.; Shu, Y.-Z.; Kakiuchi, N.; Tezuka, Y.; Kikuchi, T.; Namba, T. Chem. Pharm. Bull. 1988, 36, 648. |
[21] | (c) Juhász, L.; Kürti, L.; Antus, S. J. Nat. Prod. 2000, 63, 866. |
[22] | (a) Doskotch, R. W.; Flom, M. S. Tetrahedron 1972, 28, 4711. |
[22] | (b) Chen, P.-Y.; Wu, Y.-H.; Hsu, M.-H.; Wang, T.-P.; Wang, E.-C. Tetrahedron, 2013, 69, 653. |
[23] | Blum, T. R.; Zhu, Y.; Nordeen, S. A.; Yoon, T. P. Angew. Chem., Int. Ed. 2014, 53, 11056. |
[24] | Song, T.; Zhou, B.; Peng, G.-W.; Zhang, Q.-B.; Wu, L. Z.; Liu, Q.; Wang, Y. Chem.-Eur. J. 2014, 20, 678. |
[25] | (a) Pieters, L.; De Bruyne, T.; Claeys, M.; Vlietinck, A. M.; Calommeand, M.; vanden Berghe, D. J. Nat. Prod. 1993, 56, 899. |
[25] | (b) Zhao, Q.; Jin, J.-K.; Wang, J.; Zhang, F.-L.; Wang, Y.-F. Chem. Sci. 2020, 11, 3909. |
[26] | Bruschi, M.; Orlandi, M.; Rindone, B.; Rummakko, P.; Zoia, L. J. Phys. Org. Chem. 2006, 19, 592. |
[27] | Jing, Z.-R.; Liang, D.-D.; Tian, J.-M.; Zhang, F.-M.; Tu, Y.-Q. Org. Lett. 2021, 23, 1258. |
[28] | Mohr, A. L.; Lombardo, V. M.; Arisco, T. M.; Morrow, G. W. Synth. Commun. 2009, 39, 3845. |
[29] | Gaster, E.; Vainer, Y.; Regev, A.; Narute, S.; Sudheendran, K.; Werbeloff, A.; Shalit, H.; Pappo, D. Angew. Chem., Int. Ed. 2015, 54, 4198. |
/
〈 |
|
〉 |