研究论文

吲哚苄位碳正离子引发的串联环化反应的普适性和机理探究

  • 高中润 ,
  • 王媛 ,
  • 宋航 ,
  • 徐正仁 ,
  • 贾彦兴
展开
  • 北京大学药学院 天然药物及仿生药物国家重点实验室 北京 100191
† 共同第一作者

收稿日期: 2021-02-01

  修回日期: 2021-05-02

  网络出版日期: 2021-05-25

基金资助

国家自然科学基金(21871013)

Cascade Cyclization Reaction Initiated by Benzylic Carbocation of Indole: Scope and Mechanistic Insights

  • Zhongrun Gao ,
  • Yuan Wang ,
  • Hang Song ,
  • Zhengren Xu ,
  • Yanxing Jia
Expand
  • State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences,Peking University, Beijing 100191
† (These authors contributed equally to this work).
*Corresponding authors.E-mail: ;

Received date: 2021-02-01

  Revised date: 2021-05-02

  Online published: 2021-05-25

Supported by

National Natural Science Foundation of China(21871013)

摘要

对在α-环匹阿尼酸(α-CPA)和speradine C全合成中发展的仿生吲哚苄位碳正离子引发的串联环化反应的普适性和机理进行了研究, 实验结果表明, 该苄位碳正离子串联环化反应在含有吲哚的底物中能顺利发生, 说明吲哚氮原子的共轭效应在吲哚苄位碳正阳离子串联环化反应中起到了关键性的作用.

本文引用格式

高中润 , 王媛 , 宋航 , 徐正仁 , 贾彦兴 . 吲哚苄位碳正离子引发的串联环化反应的普适性和机理探究[J]. 有机化学, 2021 , 41(8) : 3126 -3133 . DOI: 10.6023/cjoc202102006

Abstract

During the course of the total synthesis of α-cyclopianic acid (α-CPA) and speradine C, our research group have developed a biomimetic cascade cyclization reaction initiated by the benzylic carbocation of indole. In this paper, the scope and the reaction mechanism of the cascade cyclization reaction were studied. The experimental results show that the cascade cyclization reaction occurrs at the benzylic carbocation of indole, indicating that the conjugation effect of the indole nitrogen atom plays a key role in the cascade cyclization of benzylic carbocations.

参考文献

[1]
Li, Q.; Jiang, J.; Fan, A.; Cui, Y.; Jia, Y. Org. Lett. 2011, 13, 312.
[2]
Qin, H.; Xu, Z.; Cui, Y.; Jia, Y. Angew. Chem. Int. Ed. 2011, 50, 4447.
[3]
Hu, W.; Qin, H.; Cui, Y.; Jia, Y. Chem.-Eur. J. 2013, 19, 3139.
[4]
Liu, Q.; Li, Q.; Ma, Y.; Jia, Y. Org. Lett. 2013, 15, 4528.
[5]
Huang, B.; Guo, L.; Jia, Y. Angew. Chem. Int. Ed. 2015, 54, 13599.
[6]
Li, L.; Yuan, K.; Jia, Q.; Jia, Y. Angew. Chem. Int. Ed. 2019, 58, 6074.
[7]
Liu, H.; Chen, L.; Yuan, K.; Jia, Y. Angew. Chem. Int. Ed. 2019, 58, 6362.
[8]
Zhang, X.; Cai, X.; Huang, B.; Guo, L.; Gao, Z.; Jia, Y. Angew. Chem. Int. Ed. 2019, 58, 13380.
[9]
Shi, S.; Yuan, K.; Jia, Y. Chin. Chem. Lett. 2020, 31, 401.
[10]
Shan, D.; Jia, Y. Chin. J. Org. Chem. 2013, 33, 1144.
[11]
Liu, H.; Jia, Y. Nat. Prod. Rep. 2017, 34, 411.
[12]
Yuan, K.; Jia, Y. Chin. J. Org. Chem. 2018, 38, 2386.
[13]
(a) Chang, P. K.; Ehrlich, K. C.; Fujii, I. Toxins 2009, 1, 74.
[13]
(b) Liu, X.; Walsh, C. T. Biochemistry 2009, 48, 8746.
[14]
Kropp, P. J.; Breton, G. W.; Craig, S. L.; Crawford, S. D.; Durland, W. F.; Jones, J. E.; Raleigh, J. S. J. Org. Chem. 1995, 60, 4146.
[15]
Tietze, L.; Beifuss, U. Synthesis 1988, 359.
[16]
Snider, B. B.; Rodini, D. J.; van Straten, J. J. Am. Chem. Soc. 1980, 102, 5872.
[17]
Lau, S. Y. W. Org. Lett. 2011, 13, 347.
[18]
Lu, D.; Wan, Y.; Kong, L.; Zhu, G. Org. Lett. 2017, 19, 2929.
[19]
Wang, R.; Chen, Y.; Shu, M.; Zhao, W.; Tao, M.; Du, C.; Fu, X.; Li, A.; Lin, Z. Chem.-Eur. J. 2020, 26, 1941.
[20]
Sabitha, G.; Shankaraiah, K.; Sindhu, K.; Latha, B. Synthesis 2015, 47, 124.
[21]
Liu, X.; Liu, S.; Wang, Q.; Zhou, G.; Yao, L.; Ouyang, Q.; Jiang, R.; Lan, Y.; Chen, W. Org. Lett. 2020, 22, 3149.
[22]
Yu, T. Y.; Wei, H.; Luo, Y. C.; Wang, Y.; Wang, Z. Y.; Xu, P. F. J. Org. Chem. 2016, 81, 2730.
[23]
Thirupathi, B.; Breitler, S.; Mahender Reddy, K.; Corey, E. J. J. Am. Chem. Soc. 2016, 138, 10842.
[24]
Chou, T. H.; Yu, B. H.; Chein, R. J. Chem. Commun. 2019, 55, 13522.
[25]
Ferreira, P. M. T.; Monteiro, L. S.; Pereira, G.; Ribeiro, L.; Sacramento, J.; Silva, L. Eur. J. Org. Chem. 2007, 35, 5934.
文章导航

/