研究简报

基于吡啶和1,3,5-三嗪的PNP钳状配体的设计合成以及在钴催化的末端炔烃半氢化反应中的应用

  • 王银银 ,
  • 林晓婉 ,
  • 张飘 ,
  • 沈美华 ,
  • 徐华栋 ,
  • 徐德锋
展开
  • 常州大学药学院 江苏常州 213164

收稿日期: 2021-02-26

  修回日期: 2021-04-09

  网络出版日期: 2021-05-25

基金资助

国家自然科学基金(21672027); 江苏省高层次创新创业人才团队(2017-37)

Design and Synthesis of Pyridine and 1,3,5-Triazine PNP Pincer Ligands and Their Application in Cobalt Catalyzed Semihydrogenation of Terminal Alkynes

  • Yinyin Wang ,
  • Xiaowan Lin ,
  • Piao Zhang ,
  • Meihua Shen ,
  • Huadong Xu ,
  • Defeng Xu
Expand
  • School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164
*Corresponding author.E-mail: ;

Received date: 2021-02-26

  Revised date: 2021-04-09

  Online published: 2021-05-25

Supported by

National Natural Science Foundation of China(21672027); High-Level Entrepreneurial Talent Team of Jiangsu Province(2017-37)

摘要

设计并合成了两类新型的PNP钳状配体, 一类以吡啶结构为骨架, 另一类以1,3,5-三嗪结构为骨架. 将这两类配体应用于钴催化的硅氢还原末端炔烃N-(3-炔丁基)对甲苯磺酰胺(8a)的反应中, 发现两者对反应速率和选择性均有重大影响. 其中具有吸电子取代基的吡啶结构的配体2,6-双((S)-2-((二苯基膦)甲基)吡咯烷基)烟酸乙酯(L5b)可以高效促进8a的迁移半氢化反应, 主要给出反式内烯产物. 通过进一步筛选金属催化剂、溶剂和还原剂, 确定了获得反式内烯产物的最优反应条件为CoCl2/L5b/SiH(OMe)3/四氢呋喃(THF). 运用最优条件, 研究了另外8种末端炔烃8b~8i的迁移半氢化反应, 反应产物仍主要以反式内烯为主. 简而言之, 通过配体L5b发展了一种末端炔烃迁移还原的方法.

本文引用格式

王银银 , 林晓婉 , 张飘 , 沈美华 , 徐华栋 , 徐德锋 . 基于吡啶和1,3,5-三嗪的PNP钳状配体的设计合成以及在钴催化的末端炔烃半氢化反应中的应用[J]. 有机化学, 2021 , 41(8) : 3312 -3320 . DOI: 10.6023/cjoc202102050

Abstract

Two types of novel PNP pincer ligands were designed and synthesized. One had a pyridine core and the other had a 1,3,5-triazine. Evaluation of these ligands in cobalt catalyzed semihydrogenation by silane of terminal alkyne N-(but-3- yn-1-yl)-4-methylbenzenesulfonamide (8a) was carried out, in which both had significant effects on the reaction rate and selectivity. Ethyl 2,6-bis((S)-2-((diphenylphosphanyl)methyl)pyrrolidin-1-yl)nicotinate (L5b), which had pyridine skeleton with electron-withdrawing substituent, promoted the migratory semihydrogenation of 8a giving E-2-alkene predominatly. Further screening of metal catalysts, solvents and reducing agents revealed that the optimal reaction condition was CoCl2/L5b/ SiH(OMe)3/trifluoroacetic acid (THF) for E-2-alkene product. More terminal alkynes 8b~8i were tested under the optimal reaction condition to afford E-2-alkene mainly. In brief, using ligand L5b, a method of migratory semihydrogenation of terminal alkynes was developed.

参考文献

[1]
(a) Zhou, Q. L. Angew. Chem., Int. Ed. 2016, 55, 5352.
[1]
(b) Piccirilli, L.; Pinheiro, D. L. J.; Nielsen, M. Catalysts 2020, 10, 773.
[2]
(a) Zell, T.; Milstein, D. Acc. Chem. Res. 2015, 48, 1979.
[2]
(b) Shi, R.; Zhang, Z.; Hu, X. Acc. Chem. Res. 2019, 52, 1471.
[2]
(c) Li, H.; Zheng, B.; Huang, K. W. Coord. Chem. Rev. 2015, 293-294, 116.
[2]
(d) Li, H.; Goncalves, T. P.; Lupp, D; Huang, K. W. ACS. Catal. 2019, 9, 1619.
[2]
(e) Lawrence, M. A. W.; Green, K. A.; Nelson, P. N.; Lorraine, S. C. Polyhedron 2018, 143, 11.
[2]
(f) Hao, X.; Niu, J.; Zhao, X.; Gong, J.; Song, M. Chin. J. Org. Chem. 2013, 33, 663. (in Chinese)
[2]
(郝新奇, 牛俊龙, 赵雪梅, 龚军芳, 宋毛平, 有机化学, 2013, 33, 663.)
[2]
(g) Chase, P. A.; Gossage, R. A.; van Koten, G. Top. Organomet. Chem. 2016, 54, 1.
[2]
(h) Benito-Garagorri, D.; Kirchner, K. Acc. Chem. Res. 2008, 41, 201.
[2]
(i) Alig, L.; Fritz, M.; Schneider, S. Chem. Rev. 2019, 119, 2681.
[2]
(j) Selander, N.; Szabó, K. J. Chem. Rev. 2011, 111, 2048.
[2]
(k) Rohit, K. R.; Ujwaldev, S. M.; Saranya, S.; Anilkumar, G. Asian J. Org. Chem. 2018, 7, 2338.
[2]
(l) Nishiyama, H. Enantiomer 1999, 4, 569.
[2]
(m) Nishiyama, H. Adv. Catal. Processes 1997, 2, 153.
[2]
(n) Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325.
[2]
(o) Babu, S. A.; Krishnan, K. K.; Ujwaldev, S. M.; Anilkumar, G. Asian J. Org. Chem. 2018, 7, 1033.
[2]
(p) Liu, X.-Y.; Zhu, H.-B.; Shen, Y.-J.; Jiang, J.; Tu, T. Chin. Chem. Lett. 2017, 28, 350.
[2]
(q) Bao, X; Liu, J.; Zheng, Q.; Pei, W.; Yang, Y.; Dai, Y.; Tu, T. Chin. Chem. Lett. 2019, 30, 2266.
[3]
(a) Wang, C.; Zhang, Y.; Mu, H. Jian, Z. Dalton Trans. 2020, 49, 4824.
[3]
(b) Viereck, P.; Krautwald, S.; Pabst, T. P.; Chirik, P. J. J. Am. Chem. Soc. 2020, 142, 3923.
[3]
(c) Schuster, C. H.; Diao, T.; Pappas, I.; Chirik, P. J. ACS Catal. 2016, 6, 2632.
[3]
(d) Rummelt, S. M.; Zhong, H.; Korobkov, I.; Chirik, P. J. J. Am. Chem. Soc. 2018, 140, 11589.
[3]
(e) Peterson, P. O.; Rummelt, S. M.; Wile, B. M.; Stieber, S. C. E.; Zhong, H.; Chirik, P. J. Organometallics 2020, 39, 201.
[3]
(f) Mukhopadhyay, T. K.; Rock, C. L.; Hong, M.; Ashley, D. C.; Groy, T. L.; Baik, M. H.; Trovitch, R. J. J. Am. Chem. Soc. 2017, 139, 4901.
[3]
(g) Mahmood, Q.; Guo, J.; Zhang, W.; Ma, Y.; Liang, T.; Sun, W.-H. Organometallics 2018, 37, 957.
[3]
(h) Lau, K.-C.; Jordan, R. F. Organometallics 2016, 35, 3658.
[3]
(i) Kennedy, C. R.; Zhong, H.; Joannou, M. V.; Chirik, P. J. Adv. Synth. Catal. 2020, 362, 404.
[3]
(j) Joannou, M. V.; Hoyt, J. M.; Chirik, P. J. J. Am. Chem. Soc. 2020, 142, 5314.
[3]
(k) Bianchini, C.; Giambastiani, G.; Guerrero, I. R.; Meli, A.; Passaglia, E.; Gragnoli, T. Organometallics 2004, 23, 6087.
[4]
(a) Mastalir, M.; Glatz, M.; Gorgas, N.; Stoeger, B.; Pittenauer, E.; Allmaier, G.; Veiros, L. F.; Kirchner, K. Chem.-Eur. J. 2016, 22, 12316.
[4]
(b) Mastalir, M.; Stoeger, B.; Pittenauer, E.; Puchberger, M.; Allmaier, G.; Kirchner, K. Adv. Synth. Catal. 2016, 358, 3824.
[4]
(c) Roesler, S.; Ertl, M.; Irrgang, T.; Kempe, R. Angew. Chem., Int. Ed. 2015, 54, 15046.
[4]
(d) Mastalir, M.; Tomsu, G.; Pittenauer, E.; Allmaier, G.; Kirchner, K. Org. Lett. 2016, 18, 3462.
[4]
(e) Midya, S. P.; Pitchaimani, J.; Landge, V. G.; Madhu, V.; Balaraman, E. Catal. Sci. Technol. 2018, 8, 3469.
[4]
(f) Neumann, J.; Elangovan, S.; Spannenberg, A.; Junge, K.; Beller, M. Chem.-Eur. J. 2017, 23, 5410.
[4]
(g) Bruneau-Voisine, A.; Wang, D.; Dorcet, V.; Roisnel, T.; Darcel, C.; Sortais, J. B. J. Catal. 2017, 347, 57.
[4]
(h) Fertig, R.; Irrgang, T.; Freitag, F.; Zander, J.; Kempe, R. ACS Catal. 2018, 8, 8525.
[4]
(i) Das, U. K.; Ben-David, Y.; Diskin-Posner, Y.; Milstein, D. Angew. Chem., Int. Ed. 2018, 57, 2179.
[4]
(j) Das, K.; Mondal, A.; Srimani, D. J. Org. Chem. 2018, 83, 9553.
[5]
(a) Liu, X.; Liu, B.; Liu, Q. Angew. Chem., Int. Ed. 2020, 59, 6750.
[5]
(b) Chen, J.; Shen, X.; Lu, Z. J. Am. Chem. Soc. 2020, 142, 14455.
[6]
For Cobalt catalyzed semi-hydrogenation of alkynes see:
[6]
(a) Tokmic, K.; Fout, A. R. J. Am. Chem. Soc. 2016, 138, 13700.
[6]
(b) Raya, B.; Biswas, S.; RajanBabu, T. V. ACS Catal. 2016, 6, 6318.
[6]
(c) Li, K.; Khan, R.; Zhang, X.; Gao, Y.; Zhou, Y.; Tan, H.; Chen, J.; Fan, B. Chem. Commun. 2019, 55, 5663.
[6]
(d) Landge, V. G.; Pitchaimani, J.; Midya, S. P.; Subaramanian, M.; Madhu, V.; Balaraman, E. Catal. Sci. Technol. 2018, 8, 428.
[6]
(e) Fu, S.; Chen, N.-Y.; Liu, X.; Shao, Z.; Luo, S.-P.; Liu, Q. J. Am. Chem. Soc. 2016, 138, 8588.
[6]
(f) Chen, C.; Huang, Y.; Zhang, Z.; Dong, X.-Q.; Zhang, X. Chem. Commun. 2017, 53, 4612.
[7]
Marcum, J. S.; Roberts, C. C.; Manan, R. S.; Cervarich, T. N.; Meek, S. J. J. Am. Chem. Soc. 2017, 139, 15580.
[8]
Behzad, S. K.; Amini, M. M.; Ghanbari, M.; Janghouri, M.; Anzenbacher Jr, P.; Ng, S. W. Eur. J. Inorg. Chem. 2017, 2017, 3644.
[9]
Singh, P.; Kaur, S.; Kumari, P.; Kaur, B.; Kaur, M.; Singh, G.; Bhatti, R.; Bhatti, M. J. Med. Chem. 2018, 61, 7929.
[10]
Teichert, J. F.; Zhang, S.; van, Zijl A. W.; Slaa, J. W.; Minnaard, A. J.; Feringa, B. L. Org. Lett. 2010, 12, 4658.
[11]
Arai, S.; Koike, Y.; Hada, H.; Nishida, A. J. Org. Chem. 2011, 75, 7573.
[12]
Lee, J.; Kim, K. H.; Lee, O. S.; Choi, T. L.; Lee, H. S.; Ihee, H.; Sohn, J. H. J. Org. Chem. 2016, 81, 7591.
[13]
Anderson, J. C.; Anguille, S.; Bailey, R. Chem. Commun. 2002, 34, 2018.
[14]
Yu, C.; Zhou, A.; He, J. RSC Adv. 2012, 2, 8627.
[15]
Lu, Z.; Stahl, S. S. Org. Lett. 2012, 14, 1234.
[16]
Xin, M.; Bugg, T. D. H. J. Am. Chem. Soc. 2008, 130, 10422.
文章导航

/