综述与进展

硫代磷(膦)酸酯的合成研究进展

  • 刘春琪 ,
  • 王莉贤 ,
  • 张兴华
展开
  • a 上海应用技术大学化学与环境工程学院 上海 201418
    b 宁波大学新药技术研究院 浙江宁波 315211

收稿日期: 2021-04-01

  修回日期: 2021-05-06

  网络出版日期: 2021-05-25

基金资助

国家自然科学基金(21871182)

Advances in the Synthesis of Phosphorothioate and Phosphinothioate

  • Chunqi Liu ,
  • Lixian Wang ,
  • Xinghua Zhang
Expand
  • a School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418
    b Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhengjiang 315211
*Corresponding author.E-mail:

Received date: 2021-04-01

  Revised date: 2021-05-06

  Online published: 2021-05-25

Supported by

National Natural Science Foundation of China(21871182)

摘要

硫代磷(膦)酸酯在农药、医药以及有机合成等研究领域具有广泛应用. 重点总结了由P(O)—H化合物出发合成硫代磷(膦)酸酯类化合物的研究方法, 按硫元素的不同来源分类, 对该类反应的研究进展进行综述.

本文引用格式

刘春琪 , 王莉贤 , 张兴华 . 硫代磷(膦)酸酯的合成研究进展[J]. 有机化学, 2021 , 41(8) : 2964 -2973 . DOI: 10.6023/cjoc202104002

Abstract

Organophosphorus compounds which contain phosphorus-sulfur bonds have been widely used in the fields of pesticides, pharmaceuticals and organic synthesis. The recent progress of the methods for the synthesis of phosphorothioate and phosphinothioate from P(O)—H reagents are summarized on the basis of different types of sulfur source.

参考文献

[1]
(a) Rhee, S. W.; Iyer, R. P.; Coughlin, J. E.; Padmanabhan, S.; Malerich, J. P.; Tanga, M. J. J. Labelled Compd. Radiopharm. 2012, 55, 197.
[1]
(b) Leisvuoria, A.; Ahmeda, Z.; Ora, M.; Beigelmanb, L.; Blattb, L.; Harri, L. Helv. Chim. Acta 2012, 95, 1512.
[1]
(c) Crooke, S. T.; Bennett, C. F. Annu. Rev. Pharmacol. Toxicol. 1996, 36, 107.
[1]
(d) Xie, R.-L.; Zhao, Q.-F.; Zhang, T.; Fang, J.; Mei, X.-D.; Ning, J.; Tang, Y. Bioorg. Med. Chem. 2013, 21, 278.
[1]
(e) Guga, P.; Boczkowska, M.; Janicka, M.; Maciaszek, A.; Nawrot, B.; Antoszczyk, S.; Stec, W. J. Pure Appl. Chem. 2006, 78, 993.
[1]
(f) Yan, H.-B.; Wang, X.-L.; KuoLee, R.; Chen, W.-X. Bioorg. Med. Chem. Lett. 2008, 18, 5631.
[2]
(a) Jaiswal, A. K.; Rao, G. P.; Pandey, O. P.; Sengupta, S. K. J. Agric. Food Chem. 1998, 46, 1609.
[2]
(b) Myers, D. K.; Mendel, B.; Gersmann, H. R.; Ketelaar, J. A. Nature 1952, 170, 805.
[3]
(a) Fukuoka, M.; Shuto, S.; Minakawa, N.; Ueno; Y.; Matsuda, A. J. Org. Chem. 2000, 65, 5238.
[3]
(b) Jhajharia, P.; Samota, M. K.; Seth, G. Heteroat. Chem. 2010, 21, 84.
[3]
(c) Lauer, A. M.; Mahmud, F.; Wu, J. J. Am. Chem. Soc. 2011, 133, 9119.
[3]
(d) Robertson, F.; Wu, J. Org. Lett. 2010, 12, 2668.
[3]
(e) Lauer, A. M.; Wu, J. Org. Lett. 2012, 14, 5138.
[4]
Bennett, M.; Macdonald, K.; Chan, S. W.; Luzio, J. P.; Simari, R. Science 1998, 282, 290.
[5]
Gabelt, B. T.; Hennes, E. A.; Seeman, J.; Tian, B. Invest. Opth. Vis. Sci. 2004, 45, 2732.
[6]
Kumar, T. S.; Yang, T. H.; Mishra, S.; Cronin, C.; Chakraborty, S.; Shen, J.-B.; Liang, B. T.; Jacobson, K. A. J. Med. Chem. 2013, 56, 902.
[7]
Murdock, L. L.; Hopkins, T. L. J. Agric. Food Chem. 1968, 16, 954.
[8]
Ishizaki, H.; Kobayashi, I.; Kunoh, H. Pestic. Sci. 1986, 17, 517.
[8]
Kim, Y. S.; Kim, K. D. Crop. Prot. 2009, 28, 940.
[9]
Michaelis-Arbuov: Hoffmann, F.; Moore, T.; Kagan, B. J. Am. Chem. Soc. 1956, 78, 6413.
[10]
Xiong, B.; Zhou, Y.; Zhao, C.; Goto, M.; Yin, S.-F.; Han, L.-B. Tetrahedron 2013, 69, 9373.
[11]
Wang, G.; Shen, R.; Xu, Q.; Goto, M.; Zhao, Y.-F.; Han, L.-B. T. J. Org. Chem. 2010, 75, 3890.
[12]
Kaboudin, B.; Abedi, Y.; Kato, J. Y.; Yokomatsu, T. Synthesis 2013, 45, 2323.
[13]
Zhu, Y.-Y.; Chen, T.-Q.; Li, S.; Shimada, S.; Han, L.-B. J. Am. Chem. Soc. 2016, 138, 5825.
[14]
Huang, H.; Ash, J.; Kang, J.-Y. Org. Biomol. Chem. 2018, 16, 4236.
[15]
Li, S.; Chen, T.-Q.; Saga, Y. T.; Han, L.-B. RSC Adv. 2015, 5, 71544.
[16]
Song, S.; Zhang, Y.-Q.; Yeerlan, A.; Zhang, B.-C.; Liu, J.-Z.; Jiao, N. Angew. Chem., Int. Ed. 2017, 56, 2487.
[17]
He, W.; Hou, X.; Li, X.-J.; Song, L.; Yu, Q.; Wang, Z.-W. Tetrahedron 2017, 73, 3133.
[18]
Wang, J.-C.; Huang, X.; Ni, Z.-Q.; Wang, S.-C.; Wu, J.; Pan, Y.-J. Green. Chem. 2015, 17, 314.
[19]
Wang, J.-C.; Huang, X.; Ni, Z.-Q.; Wang, S.-C.; Pan, Y.-J.; Wu, J. Tetrahedron 2015, 71, 7853.
[20]
Bi, X.-J.; Li, J.-C.; Meng, F.-H.; Wang, H.-M.; Xiao, J.-H. Tetrahedron 2016, 72, 706.
[21]
Sun, J.-G.; Weng, W.-Z.; Li, P.; Zhang, B. Green Chem. 2017, 19, 1128.
[22]
Sun, J.-G.; Yang, H.; Li, P.; Zhang, B. Org. Lett. 2016, 18, 5114.
[23]
Zhang, H.; Zhan, Z.; Lin, Y.; Shi, Y.-S.; Li, G.-B.; Wang, Q.-T.; Deng, Y.; Hai, L.; Wu, Y. Org. Chem. Front. 2018, 5, 1416.
[24]
Li, Y.-J.; Yang, Q.; Yang, L.-Q.; Lei, N.; Zheng, K. Chem. Commun. 2019, 55, 4981.
[25]
Torii, S.; Tanaka, H.; Sayo, N. J. Org. Chem. 1979, 44, 2938.
[26]
Gao, Y.-X.; Tang, G.; Cao, Y.; Zhao, Y.-F. Synthesis 2009, 1081.
[27]
Ouyang, Y.-J.; Li, Y.-Y.; Li, N.-B.; Xu, X.-H. Chin. Chem. Lett. 2013, 24, 1103.
[28]
Ouyang, Y.-J.; Q, R.-H.; Chen, S.-H.; Chen, J.-Y.; Xu, X.-H. Chin. J. Org. Chem. 2015, 35, 2636.
[29]
Wang, J.-X.; Wang, X.-L.; Li, H.-J.; Yan, J. J. Organomet. Chem. 2018, 859, 75.
[30]
Choudhary, R.; Singh, P.; Rekha, B.; Sharma, M. C.; Badsara, S. S. Org. Biomol. Chem. 2019, 17, 9757.
[31]
Kumaraswamy, G.; Raju, R. Adv. Synth. Catal. 2014, 356, 2591.
[32]
Bai, J.; Cui, X.-L.; Wang, H.; Wu, Y.-J. Chem. Commun. 2014, 50, 8860.
[33]
Zhang, X.-H.; Wang, D.-G.; An, D.; Han, B.-S.; Song, X.; Li, L.; Zhang, G.-Q; Wang, L.-X. J. Org. Chem. 2018, 83, 1532.
[34]
Moghaddam, F. M.; Daneshfar. M.; Azaryan, R. Phosphorus Sulfur Relat. Elem. 2020, 196, 311.
[35]
Wang, D.-G; Zhao, J.-L; Xu, W.-G.; Shao, C.-W.; Shi, Z.; Li, L.; Zhang, X.-H. Org. Biomol. Chem. 2017, 15, 545.
[36]
Moon, Y.; Moon, Y.; Choi, H.; Hong, S. Green Chem. 2017, 19, 1005.
[37]
Lin, Y.-M.; Lu, G.-P.; Wang, G.-X.; Yi, W.-B. J. Org. Chem. 2017, 82, 382.
[38]
Liu, T.; Zhang, Y, Q.; Yu, R.; Liu, J, J.; Cheng, F, X. Synthesis 2020, 52, 253.
[39]
Kaboudin, B. Tetrahedron Lett. 2002, 43, 8713.
[40]
Kaboudin, B.; Farjadian, F. Beilstein J. Org. Chem. 2006, 2, 4.
[41]
Shi, M.; Jiang, M.; Liu, L.-P. Org. Biomol. Chem. 2007, 5, 438.
[42]
Xu, J.; Zhang, L.-L.; Li, X.-Q.; Gao, Y.-Z.; Tang, G.; Zhao, Y.-F. Org. Lett. 2016, 18, 1266.
[43]
Zhang, L.-L.; Zhang, P.-B.; Li, X.-Q.; Xu, J.; Tang, G.; Zhao, Y.-F. J. Org. Chem. 2016, 81, 5588.
[44]
Zhang, X.-H.; Shi, Z.; Shao, C.-W.; Zhao, J.-L.; Wang, D.-G.; Zhang, G.-Q.; Li, L. Eur. J. Org. Chem. 2017, 14, 1884.
[45]
Wang, L.; Yang, S.; Chen, L.; Yuan, S.; Chen, Q.; He, M.-Y.; Zhang, Z.-H. Catal. Sci. Technol. 2017, 7, 2356.
[46]
Shi, S.-S.; Zhang, P.-B.; Luo, C.; Zhuo, S.-H.; Zhang, Y.-M.; Tang, G.; Zhao, Y. F. Org. Lett. 2020, 22,1760.
[47]
Gong, X.-X.; Chen, J.-H.; Liu, J.-H.; Wu, J. Org. Chem. Front. 2017, 4, 2221.
[48]
Mondal, M.; Saha, A. Tetrahedron Lett. 2019, 60, 150965.
[49]
Han, X.-P.; Zhang, Y.-H.; Wu, J. J. Am. Chem. Soc. 2010, 132, 4104.
[50]
Han, X.-P, Wu, J. Org. Lett. 2010, 24, 5780.
[51]
Chen, X.-Y.; Pu, M.; Cheng, H.-G.; Sperger, T.; Schoenebeck, F. Angew. Chem., Int. Ed. 2019, 58, 11395.
[52]
Jones, D. J.; O'Leary, E. M.; O'Sullivan, T. P. Adv. Synth. Catal. 2020, 362, 1825.
文章导航

/