研究论文

钯催化串联Heck环化反应制备氮杂桥环化合物

  • 李曼 ,
  • 汪颖 ,
  • 徐允河
展开
  • 中国科学技术大学化学与材料科学学院 合肥 230026

收稿日期: 2021-04-29

  修回日期: 2021-05-11

  网络出版日期: 2021-05-25

基金资助

国家自然科学基金(21871240); 中央高校基本科研业务费专项资金(WK2060000017)

Palladium-Catalyzed Tandem Heck Cyclization Reactions to Access the Bridged N-Heterocyclic Compounds

  • Man Li ,
  • Ying Wang ,
  • Yunhe Xu
Expand
  • Department of Chemistry, University of Science and Technology of China, Hefei 230026
*Corresponding author.E-mail:

Received date: 2021-04-29

  Revised date: 2021-05-11

  Online published: 2021-05-25

Supported by

National Natural Science Foundation of China(21871240); Fundamental Research Funds for the Central Universities(WK2060000017)

摘要

报道了一种钯催化分子内Heck环化串联反应. 该反应使用3-取代保护的吲哚酰胺衍生物作为原料, 碘化钯作为催化剂, 4-(二甲氨基)三苯基膦作为配体, 在乙腈和甲苯混合溶剂中发生串联反应, 以优良的收率合成了氮杂桥环化合物. 该反应具有良好的官能团兼容性和较高的合成效率, 为“一锅法”构建稠环化合物提供了一种简便的方法.

本文引用格式

李曼 , 汪颖 , 徐允河 . 钯催化串联Heck环化反应制备氮杂桥环化合物[J]. 有机化学, 2021 , 41(8) : 3073 -3082 . DOI: 10.6023/cjoc202104059

Abstract

Palladium-catalyzed intramolecular Heck tandem cyclization reactions were developed. With palladium iodide as a catalyst and 4-(dimethylamino)triphenylphosphine as a ligand, 3-substituted indoleamide derivatives were converted to bridged N-heterocyclic products in good yields under simple reaction conditions. The tandem reactions are featured by efficient construction of fused ring compounds in one pot and good functional group compatibility.

参考文献

[1]
(a) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127.
[1]
(b) Pennington, L.-D.; Moustaskas, D.-T. J. Med. Chem. 2017, 60, 3552.
[1]
(c) Zeni, G.; Larock, R.-C. Chem. Rev. 2006, 106, 4644.
[1]
(d) Zheng, Y.; Xie, Z.-Z.; Chen, K.; Xiang, H.-Y.; Yang, H. Chin. J. Org. Chem. 2021, 41, 1. (in Chinese)
[1]
(郑雨, 谢珍珍, 陈凯, 向皞月, 阳华, 有机化学, 2021, 41, 1.)
[2]
(a) Psarra, V.; Fousteris, M.-A.; Hennig, L.; Giannis, A.; Nikolaropoulos, S.-S. Tetrahedron 2016, 72, 2376.
[2]
(b) De, Candia, M.; Zaetta,, G.; Denora,, N.; Cellamare,, S.; Altomare,, C.-D. Eur. J. Med. Chem. 2017, 125, 288.
[2]
(c) Purgatorio, R.; De Candia, M.; Toma, M.; Ivanova, O.-A.; Voskressensky, L.-G.; Altomare, C.-D. Eur. J. Med. Chem. 2019, 77, 414.
[3]
Ping, Y.-Y.; Li, Y.-X.; Zhu, J.-P.; Kong, W.-Q. Angew. Chem., Int. Ed. 2019, 58, 1562.
[4]
(a) Shilov, A.-E.; ShulQpin, G.-B. Chem. Rev. 1997, 97, 2879.
[4]
(b) Bergman, R.-G. Nature 2007, 446, 391.
[4]
(c) Chen, X.; Engle, K.-M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
[5]
(a) Frignani, F.; Rangoni, F.; Catellani, M. Angew. Chem., Int. Ed. 1997, 36, 119.
[5]
(b) Della, Ca, N.; Fontana,, M.; Motti,, E.; Catellani,, M. Acc. Chem. Res. 2016, 49, 1389.
[5]
(c) Ye, J.-T.; Lantens, M. Nat. Chem. 2015, 7, 863.
[6]
Burns, B.; Grigg, R.; Ratananukul, P.; Sridharan, V.; Stevenson, P.; Worakun, T. Tetrahedron Lett. 1988, 29, 4329.
[7]
(a) Shen, C.; Liu, R. R.; Fan, R. J.; Li, Y. L.; Xu, T. F.; Jia, Y.-X. J. Am. Chem. Soc. 2015, 137, 4936.
[7]
(b) Kong, W. Q.; Wang, Q.; Zhu, J.-P. Angew. Chem., Int. Ed. 2017, 56, 3987.
[7]
(c) Zhang, Z.-M.; Xu, B.; Qian, Y.-Y.; Wu, L.-Z.; Wu, Y.-Q.; Zhou, L.-J.; Zhang, J.-L. Angew. Chem., Int. Ed. 2018, 57, 10373.
[8]
(a) Newman, S.-G.; Lautens, M. J. Am. Chem. Soc. 2011, 133, 1778.
[8]
(b) Newman, S.-G.; Howell, J.-K.; Lautens, M. J. Am. Chem. Soc. 2011, 133, 14916.
[8]
(c) Petrone, D.-A.; Lischka, M.; Lautens, M. Angew. Chem., Int. Ed. 2013, 52, 10635.
[8]
(d) Petrone, D. A.; Yoon, H.; Lautens, M. Angew. Chem., Int. Ed. 2014, 53, 7908.
[8]
(e) Zhang, Z.-M.; Xu, B.; Wu, L.-Z.; Ji, D.-T.; Zhang, J.-L. J. Am. Chem. Soc. 2019, 141, 8110.
[9]
(a) Pinto, A.; Jia, Y.-X.; Neuville, L.; Zhu, J.-P. Chem.-Eur. J. 2007, 13, 961.
[9]
(b) Yoon, H.; Petrone, D.-A.; Lautens, M. Org. Lett. 2014, 16, 6420.
[9]
(c) Petrone, D.-A.; Yen, A.; Zeidan, N.; Lautens, M. Org. Lett. 2015, 17, 4838.
[10]
(a) Vachhani, D.-D.; Butani, H.-H.; Sharma, N.; Bhoya, U.-C.; Shah, A.-K.; Van der Eycken, E.-V. Chem. Commun. 2015, 51, 14862.
[10]
(b) Yoon, H.; Jiang, Y.-J.; Lautens, M. Synthesis 2016, 48, 1483.
[10]
(c) Jiang, Z.-W.; Hou, L.-L.; Ni, C.-J.; Wang, D.; Tong, X.-F. Chem. Commun. 2017, 53, 4270.
[11]
Jaegli, S.; Erb, W.; Retailleau, P.; Vors, J.-P.; Neuville, L.; Zhu, J.-P. Chem.-Eur. J. 2010, 16, 5863.
[12]
(a) Fretwell, P.; Meerholtz, C.; Sridharan, V.; Grigg, R. Tetrahedron 1994, 50, 359.
[12]
(b) Ruck, R.-T.; Huffman, M.-A.; Kim, M.-M.; Shevlin, M.; Kandur, W.-V.; Davies, I.-W. Angew. Chem., Int. Ed. 2008, 47, 4711.
[12]
(c) Satyanarayana, G.; Maichle-Mossmer, C.; Maier, M.-E. Chem. Commun. 2009, 1571.
[12]
(d) Piou, T.; Neuville, L.; Zhu, J.-P. Org. Lett. 2012, 14, 3760.
[12]
(e) Piou, T.; Neuville, L.; Zhu, J.-P. Angew. Chem., Int. Ed. 2012, 124, 11729.
[12]
(f) Ye, J.-T.; Shi, Z.-H.; Sperger, T.; Yasukawa, Y.; Kingston, C.; Schoenebeck, F.; Lautens, M. Nat. Chem. 2017, 9, 361.
[13]
(a) Zheng, H.-J.; Zhu, J.-P.; Shi, Y.-A. Angew. Chem., Int. Ed. 2014, 53, 11280.
[13]
(b) Sickert, M.; Weinstabl, H.; Peters, B.; Hou, X.; Lautens, M. Angew. Chem., Int. Ed. 2014, 126, 5247.
[13]
(c) Yoon, H.; Lossouarn, A.; Landau, F.; Lautens, M. Org. Lett. 2016, 18, 6324.
[13]
(d) Perez-Gomez, M.; Hernandez-Ponte, S.; Bautista, D.; Garcia-Lopez, J.-A. Chem. Commun. 2017, 53, 2842.
[13]
(e) Shao, C.-D.; Wu, Z.; Ji, X.-M.; Zhou, B.; Zhang, Y.-H. Chem. Commun. 2017, 53, 10429.
[13]
(f) Yoon, H.; Rolz, M.; Landau, F.; Lautens, M. Angew. Chem., Int. Ed. 2017, 56, 10920.
[13]
(g) Luo, X.-A.; Zhou, L.-W.; Lu, H.-Y.; Deng, G.-B.; Liang, Y.; Yang, C.-M. Org. Lett. 2019, 21, 9960.
[13]
(h) Wollenburg, M.; Bajohr, J.; Marchese, A.-D.; Whyte, A.; Glorius, F.; Lautens, M. Org. Lett. 2020, 22, 3679.
[14]
(a) Wilson, J. E. Tetrahedron Lett. 2012, 53, 2308.
[14]
(b) Seashore-Ludlow, B.; Somfai, P. Org. Lett. 2012, 14, 3858.
[14]
(c) Schempp, T.-T.; Daniels, B.-E.; Staben, S.-T.; Stivala, C.-E. Org. Lett. 2017, 19, 3616.
[14]
(d) Zhang, Z.-M.; Xu, B.; Wu, L.-Z.; Qian, Y.-Y.; Wu, Y.-Q.; Zhou, L.-J.; Zhang, J.-L. Angew. Chem., Int. Ed. 2019, 58, 14653.
[14]
(e) Zhou, M.-B.; Huang, X.-C.; Liu, Y.-Y.; Song, R.-J.; Li, J.-H. Chem.-Eur. J. 2014, 20, 1843.
[14]
(f) Liu, R.-R.; Wang, Y.-G.; Li, Y.-L.; Huang, B.-B.; Liang, R.-X.; Jia, Y.-X. Angew. Chem., Int. Ed. 2017, 56, 7475.
[14]
(g) Zhou, L.-J.; Li, S.-L.; Xu, B.; Ji, D.-T.; Wu, L.-Z.; Liu, Y.; Zhang, Z.-M.; Zhang, J.-L. Angew. Chem., Int. Ed. 2020, 59, 2769.
[14]
(h) Bai, X.-F.; Wu, C.-Z.; Ge, S.-Z.; Lu, Y.-X. Angew. Chem., Int. Ed. 2020, 59, 2764.
[15]
(a) Kennewellb, P.; Teasdale, A. J.; Grigg, R. Tetrahedron Lett. 1992, 33, 1189.
[15]
(b) Seashore-Ludlow, B.; Somfai, P. Org. Lett. 2010, 12, 3723.
[15]
(c) Hu, M.-A.; Gao, Y.; Li, J.-X.; Wu, W.-Q.; Li, C.-S.; Jiang, H.; Jiang, H.-F. Org. Biomol. Chem. 2018, 16, 7383.
[15]
(d) Hu, H.-Z.; Teng, F.; Liu, J.; Hu, W.-M.; Luo, S.; Zhu, Q. Angew. Chem., Int. Ed. 2019, 58, 9225.
[16]
(a) Kong, W.-Q.; Wang, Q.; Zhu, J.-P. Angew. Chem., Int. Ed. 2016, 55, 9714.
[16]
(b) Yao, T.-L.; Wang, B.; He, D.; Zhang, X.-F.; Li, X.; Fang, R. Org. Lett. 2020, 22, 6784.
[17]
(a) Liu, X.-L.; Ma, X.-N.; Huang, Y.-Z.; Gu, Z.-H. Org. Lett. 2013, 15, 4814.
[17]
(b) Gao, Y.; Xiong, W.-F.; Chen, H.-J.; Peng, J.-W.; Gao, Y.-L.; Jiang, H.-F. J. Org. Chem. 2015, 80, 7456.
[17]
(c) Liu, X.-L.; Li, B.; Gu, Z.-H. J. Org. Chem. 2015, 80, 7547.
[18]
Wang, M.; Zhang, X.; Zhuang, Y.-X.; Xu, Y.-H.; Loh, T.-P. J. Am. Chem. Soc. 2015, 137, 1341.
[19]
(a) Tang, S.-Y.; Guo, Q.-X.; Fu, Y. Chem.-Eur. J. 2011, 17, 13866.
[19]
(b) Glover, B.; Harvey, K.-A.; Liu, B.; Sharp, M.-J. Org. Lett. 2003, 5, 301.
[19]
(c) Petrone, D.-A.; Yen, A.; Zeidan, N.; Lautens, M. Org. Lett. 2015, 17, 4838.
文章导航

/