丙酮氰醇为氰源的卤代烃的氰基取代反应研究
收稿日期: 2021-02-19
修回日期: 2021-03-23
网络出版日期: 2021-04-16
基金资助
黑龙江省自然科学基金(LH2019B010); 国家自然科学基金(21908034); 国家自然科学基金(22008045)
Study on the Cyanide Substitution Reaction of Acetone Cannolhydrin as Cyanogen Source
Received date: 2021-02-19
Revised date: 2021-03-23
Online published: 2021-04-16
Supported by
Natural Science Foundation of Heilongjiang Province(LH2019B010); National Natural Science Foundation of China(21908034); National Natural Science Foundation of China(22008045)
氰基取代反应是有机合成中引入氰基官能团的重要方法. 以丙酮氰醇为氰化试剂, 以脂肪族卤代烷R—X (X=Cl, Br, I)为底物, 通过亲核取代反应合成一系列氰基化合物. 研究结果表明, 在50 ℃下 四氢呋喃(THF)与1,3-二甲基咪唑啉酮(DMI)(体积比为3:1)组成的混合物为反应溶剂, LiOH?H2O为碱, 丙酮氰醇与相应的卤代烷反应可以得到氰化产物, 产率达到70%~99%. 该反应使用廉价低毒的丙酮氰醇替代剧毒的氰化钠或其他价格昂贵、使用条件苛刻的氰化试剂, 且不需要贵金属作催化剂, 反应条件温和, 适用范围广泛, 具有较大的应用价值.
郭芳 , 由君 , 武文菊 , 喻艳超 , 井彬 , 刘波 . 丙酮氰醇为氰源的卤代烃的氰基取代反应研究[J]. 有机化学, 2021 , 41(5) : 1968 -1973 . DOI: 10.6023/cjoc20210203
The cyano substitution reaction is an important method for introducing cyano functional groups in organic synthesis. In this paper, a series of cyano compounds were synthesized by nucleophilic substitution reaction using acetone cyanohydrin as cyanation reagent and aliphatic haloalkanes R—X (X=Cl, Br, I) as substrates. The results show that the cyanation product can be obtained by reacting the acetone cyanohydrin with the corresponding halogenated alkanes at 50 ℃, and the yield can reach 70%~99%. The reaction solvent is the mixture of tetrahydrofuran (THF) and 1,3-dime- thylimidazolinone (DMI) (volume ratio of 3:1), and the base is LiOH?H2O. This reaction uses cheap and low toxicity acetone cyanohydrin instead of highly toxic sodium cyanide or other expensive cyanide reagents requiring harsh conditions and it also does not require precious metals as catalysts. The reaction conditions is mild so that it has extensive application and great value of practical application.
Key words: haloalkane; acetone cyanohydrin; cyanide substitution; cyanide
[1] | (a) Fleming, F. F.; Yao, L.; Ravikumar, P. C. J. Med. Chem. 2010, 53, 7902. |
[1] | (b) Dhillon, S.; Weber, J. Drugs 2009, 69, 2103. |
[1] | (c) Ma, D. Y. Chin. J. Org. Chem. 2008, 28, 1439. (in Chinese). |
[1] | (马大友, 有机化学, 2008, 28, 1439). |
[2] | (a) Yu, Z. W.; Li, L. Y.; Shen, Z. M. Chin. J. Org. Chem. 2017, 37, 1273. (in Chinese). |
[2] | (俞峥炜, 李林奕, 沈增明, 有机化学, 2017, 37, 1273.) |
[2] | (b) Yan, G.; Zhang, Y.; Wang, J. Adv. Synth. Catal. 2017, 359, 4068. |
[2] | (c) Zhou, H. Y.; Li, N. N.; Yang, J. Y. Chin. J. Org. Chem. 2016, 36, 502. (in Chinese). |
[2] | (周红艳, 李娜娜, 杨靖亚, 有机化学, 2016, 36, 502.) |
[2] | (d) Wang, H. S.; Zeng, J. E. Chin. J. Org. Chem. 2012, 32, 934. (in Chinese). |
[2] | (王宏社, 曾君娥, 有机化学, 2012, 32, 934.) |
[2] | (e) Fang, G. N.; You, J.; Yu, Y. C.; Jing, J. K.; Liu, B.; Wu, W. J. Chin. J. Org. Chem. 2020, 40, 2871. (in Chinese). |
[2] | (房观念, 由君, 喻艳超, 荆军凯, 刘波, 武文菊, 有机化学, 2020, 40, 2871.) |
[3] | (a) Shimizu, S.; Kito, K.; Sasaki, Y. Chem. Commun. 1997, 17, 1629. |
[3] | (b) Fort, Y.; Dubosclard-Gottardi, C. Synth. Commun. 1996, 26, 2811. |
[3] | (c) Mouradzadegun, A.; Ganjali, M. R.; Mostafavi, M. A. Appl. Organomet. Chem. 2018, 32, e4214. |
[3] | (d) Cao, Y. Q.; Chen, B. H.; Pei, B. G. Synth. Commun. 2001, 31, 2203. |
[4] | (a) Ren, Y.; Yan, M.; Zhao, S. Tetrahedron Lett. 2011, 52, 5107. |
[4] | (b) Saha, D.; Adak, L.; Mukherjee, M. Org. Biomol. Chem. 2012, 10, 952. |
[4] | (c) Xia, A.; Xie, X.; Chen, H. Org. Lett. 2018, 20, 773. |
[4] | (d) Ratani, T. S.; Bachman, S.; Fu, G. C. J. Am. Chem. Soc. 2015, 137, 13902. |
[4] | (e) Nenajdenko, V. G.; Muzalevskiy, V. M.; Shastin, A. V. J. Fluorine Chem. 2007, 128, 818. |
[4] | (f) Wang C, Wang C, Wang Q. Chem.-Eur. J. 2007, 13, 6484. |
[5] | (a) Yabe, O.; Mizufune, H.; Ikemoto, T. Synlett 2009,1291. |
[5] | (b) Satoh, Y.; Obora, Y. RSC Adv. 2014, 4, 15736. |
[5] | (c) Zieger, H. E.; Wo, S. J. Org. Chem. 1994, 59, 3838. |
[5] | (d) Echigo, Y.; Watanabe, Y.; Mukaiyama, T. Chem. Lett. 1977, 6, 697. |
[5] | (e) Munemori, D.; Tsuji, H.; Uchida, K. Synthesis 2014, 46, 2747. |
[6] | Powell, K. J.; Han, L. C.; Sharma, P. Org. Lett. 2014, 16, 2158. |
[7] | Dowd, P.; Wilk, B. K.; Wlostowski, M. Synth. Commun. 1993, 23, 2323. |
[8] | Shapiro, E. A.; Pereverzeva, Y. O.; Nefedov, A. O.; éismont, M. Y. Russ. Chem. B 1989, 38, 2432. |
[9] | (a) Meng, H.; Gao, S.; Luo, M. Eur. J. Org. Chem. 2006,4617. |
[9] | (b) Geng, H.; Huang, P. Q. Tetrahedron 2015, 71, 3795. |
[9] | (c) Lammens, T. M.; Le N?tre, J.; Franssen, M. C. ChemSusChem. 2011, 4, 785. |
[9] | (d) Dai, J. J.; Huang, Y. B.; Fang, C. ChemSusChem 2012, 5, 617. |
[9] | (e) Cook, M. C.; Witherell, R. D.; White, R. L. Lett. Drug Des. Discovery 2010, 7, 9. |
[9] | (f) Temelli, B.; Unaleroglu, C. Synthesis 2014, 46, 1407. |
[9] | (g) Barhdadi, R.; Gal, J.; Heintz, M. Tetrahedron 1993, 49, 5091. |
[9] | (h) Black, P. J.; Edwards, M. G.; Williams, J. M. Eur. J. Org. Chem. 2006,4367. |
[9] | (i) Camps, F.; Gasol, V.; Guerrero, A. Synth. Commun. 1988, 18, 445. |
[9] | (j) Boivin, J; Laurent, K. E.; Zard, S. Z. Tetrahedron 1995, 51, 2573. |
[9] | (k) Ghiaci, M.; Sedaghat, M. E.; Kalbasi, R. J. Tetrahedron 2005, 61, 5529. |
[9] | (l) DiBiase, S. A.; Wolak, R. P.; Dishong, D. M. J. Org. Chem. 1980, 45, 3630. |
[9] | (m) Guaragna, A.; Mauro, D. N.; Pedatella, P. J. Labelled Compd. Radiopharm. 2006, 49, 675. |
[9] | (n) Hu, L.Z; Hussain, M. I.; Deng, Q. F.; Liu, Q.; Feng, Y.Y; Zhang, X. H.; Xiong, Y. Tetrahedron 2019, 75, 308. |
[9] | (o) Laroche, C.; Harakat, D.; Bertus, P. Org. Biomol. Chem. 2005, 3, 3482. |
[9] | (p) Jouanno, L. A.; Sabot, C.; Renard, P. Y. J. Org. Chem. 2012. 77, 8549. |
[9] | (q) Christophe, L.; Vincent, C.; Ludwig, C.; Cyril, O.; Louis, F. Eur. J. Org. Chem. 2017.2118. |
/
〈 |
|
〉 |