研究简报

可循环金属铋配合物催化对亚甲基苯醌化合物的1,6-共轭加成反应研究

  • 李翰林 ,
  • 刘冬兰 ,
  • 陈梁 ,
  • 许海燕 ,
  • 陆鸿飞
展开
  • 江苏科技大学环境与化学工程学院 江苏镇江 212100

收稿日期: 2021-03-08

  修回日期: 2021-04-25

  网络出版日期: 2021-06-02

Alkoxylation of para-Quinone Methides via Bismuth Complex Catalyzed 1,6-Addition Reactions of Alcohols

  • Hanlin Li ,
  • Donglan Liu ,
  • Liang Chen ,
  • Haiyan Xu ,
  • Hongfei Lu
Expand
  • School of Environmental and Chemical Engineering, Jiangsu University of Science and Techonology, Zhenjiang 212100
*Corresponding authors. E-mail: ;

Received date: 2021-03-08

  Revised date: 2021-04-25

  Online published: 2021-06-02

摘要

设计并合成了一种可催化对亚甲基苯醌化合物的1,6-加成反应的金属铋络合物, 并得到二芳基及其取代化合物. 该反应的显著特征是使用了廉价、未开发、未引起重视和可重复利用的金属铋络合物, 使反应更具有可持续性. 另外二芳基甲基取代化合物产率高、底物范围广、官能团耐受性好, 反应操作简便、条件温和, 是一种可行性高且有吸引力的方案.

本文引用格式

李翰林 , 刘冬兰 , 陈梁 , 许海燕 , 陆鸿飞 . 可循环金属铋配合物催化对亚甲基苯醌化合物的1,6-共轭加成反应研究[J]. 有机化学, 2021 , 41(8) : 3279 -3284 . DOI: 10.6023/cjoc202103018

Abstract

An effective 1,6-addition route for para-quinone methides (p-QMs) to synthesize bismuth-catalyzed substituted diarylmethanes was developed. The key feature of this transformation in our methodology is that the metallic bismuth complexes are inexpensive, untapped, overlooked, and reusable, making the reaction more sustainable. Moreover, this protocol provides facile access to a class of deviratives of diaryl and triarylmenthanes with good to excellent yields and good tolerance of the functional groups. A feasible and appealing solution is delivered by convenient work-up and mild reaction conditions.

参考文献

[1]
(a) Peter, M. G. Angew. Chem. Int. Ed. 1989, 28, 555.
[1]
(b) Itoh, T. Prog. Polym. Sci. 2001, 26, 1019.
[1]
(c) Toteva, M. M.; Richard, J. P. Adv. Phys. Org. Chem. 2011, 45, 39.
[2]
(a) Takao, K.; Sasaki, T.; Kozaki, T.; Yanagisawa, Y.; Tadano, K.; Kawashima, A.; Shinonaga, H. Org. Lett. 2001, 3, 4291.
[2]
(b) Jansen, R.; Gerth, K.; Steinmetz, H.; Reinecke, S.; Kessler, W.; Kirschning, A.; Müller, R. Chem.-Eur. J. 2011, 17, 7739.
[2]
(c) Smith, A. B.; Mesaros, E. F.; Meyer, E. A. J. Am. Chem. Soc. 2006, 128, 5292.
[2]
(d) Kupchan, S. M.; Karim, A.; Marcks, C. J. Am. Chem. Soc. 1968, 90, 5923.
[3]
(a) Lima, C. G. S.; Pauli, F. P.; Costa, D. C. S.; de Souza, A. S.; Forezi, L. S. M.; Ferreira, V. F.; da Silva, F. de C. Eur. J. Org. Chem. 2020, 18, 2650.
[3]
(b) Wang, J.-Y.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Org. Chem. Front. 2020, 7, 1743.
[4]
Chu, W. D.; Zhang, L. F.; Bao, X.; Zhao, X. H.; Zeng, C.; Du, J.; Zhang, Y. G. B. F.; Wang, X.; Ma, X. Y.; Fan, C. A. Angew. Chem. Int. Ed. 2013, 52, 9229.
[5]
Caruana, L.; Kniep, F.; Johansen, T. K.; Poulsen, P. H.; Jorgensen, K. A. J. Am. Chem. Soc. 2014, 136, 15929.
[6]
Lou, Y. Z.; Cao, P.; Jia, T.; Zhang, Y. L.; Wang, M.; Liao, J. Angew. Chem. Int. Ed. 2015, 54, 12134.
[7]
Dong, N.; Zhang, Z. P.; Xue, X. S.; Li, X.; Cheng, J. P. Angew. Chem. Int. Ed. 2016, 55, 1460.
[8]
Jarava-Barrera, C.; Parra, A.; Lopez, A.; Cruz-Acosta, F.; Collado-Sanz, D.; Cardenas, D. J.; Tortosa, M. ACS Catal. 2016, 6, 442.
[9]
Huang, G. B.; Huang, W. H.; Guo, J.; Xu, D. L.; Qu, X. C.; Zhai, P. H.; Zheng, X. H.; Weng, J.; Lu, G. Adv. Synth. Catal. 2019, 361, 1241.
[10]
He, F. S.; Jin, J. H.; Yang, Z. T.; Yu, X. X.; Fossey, J. S.; Deng, W. P. ACS Catal. 2016, 6, 652.
[11]
Cheng, Y. Y.; Fang, Z. Q.; Jia, Y. W.; Lu, Z. Y.; Li, W. J.; Li, P. F. RSC Adv. 2019, 9, 24212.
[12]
Wang, D.; Song, Z. F.; Wang, W. J.; Xu, T. Org. Lett. 2019, 21, 3963.
[13]
Zhao, K.; Zhi, Y.; Wang, A.; Enders, D. ACS Catal. 2016, 6, 657.
[14]
(a) Liu, T.; Liu, J.; Xia, S.; Meng, J.; Shen, X.; Zhu, X.; Chen, W.; Sun, C.; Cheng, F. ACS Omega 2018, 3, 1409.
[14]
(b) Jadhav, A. S.; Anand, R. V. Org. Biomol. Chem. 2017, 15, 56.
[15]
Yu, J.; Chen, S.; Liu, K.; Yuan, L.; Zhao, Y.; Chai, Z.; Mei, L. Tetrahedron Lett. 2020, 61 (27), 152076.
[16]
(a) Xie, K. X.; Zhang, Z. P.; Li, X. Org. Lett. 2017, 19, 6708.
[16]
(b) Goswami, P.; Anand, R. V. ChemistrySelect 2016, 1(10), 2556.
[17]
(a) Lu, H.; Wu, R.; Cheng, H.; Nie, S.; Tang, Y.; Gao, Y.; Luo, Z. Synthesis 2015, 47, 1447.
[17]
(b) Lu, H. F.; Sun, L. L.; Le, W. J.; Yang, F. F.; Zhou, J. T.; Gao, Y. H. Tetrahedron Lett. 2012, 53, 4267.
[17]
(c) Ni, S.; Shen, W.; Gao, Y.; Tang, Y.; Zhang, X.; Gu, X.; Lu, H. Chin. J. Org. Chem. 2015, 35, 2393. (in Chinese)
[17]
(聂士鹏, 沈薇, 高玉华, 唐演, 张翔, 谷晓玉, 陆鸿飞, 有机化学, 2015, 35, 2393.)
[18]
Lu, H.; Zhou, J.; Cheng, H.; Sun, L.; Yang, F.; Wu, R.; Gao, Y.; Luo, Z. Tetrahedron 2013, 69, 11174.
[19]
Zhang, X.; Gu, X.; Gao, Y.; Nie, S.; Lu, H. Appl. Organomet. Chem. 2017, 31, 1.
[20]
Liang, X.; Xu, H.; Li, H.; Chen, L.; Lu, H. Eur. J. Org. Chem. 2020, 2, 217.
[21]
Abrams, P.; Freeman, R.; Anderstrom, C.; Mattiasson, A. Br. J Urol. 1998, 81, 801.
文章导航

/