综述与进展

2-氨基吡啶在构建五元、六元氮稠环合成中的应用

  • 陈淇 ,
  • 陈思鸿 ,
  • 吴汉清 ,
  • 曾晓晴 ,
  • 陈伟清 ,
  • 孙国星 ,
  • 汪朝阳
展开
  • a 华南师范大学化学学院 教育部环境理论化学重点实验室 广州市生物医药分析化学重点实验室 广州 510006
    b 澳门大学应用物理及材料工程研究院 教育部联合重点实验室 澳门 999078

收稿日期: 2021-04-05

  修回日期: 2021-04-29

  网络出版日期: 2021-06-02

基金资助

广东省基础与应用基础研究基金(2021A1515012342); 广东省科技计划(2017A010103016)

Application of 2-Aminopyridines in the Synthesis of Five- and Six-Membered Azaheterocycles

  • Qi Chen ,
  • Sihong Chen ,
  • Hanqing Wu ,
  • Xiaoqing Zeng ,
  • Weiqing Chen ,
  • Guoxing Sun ,
  • Zhaoyang Wang
Expand
  • a Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006
    b Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau 999078
* Corresponding authors. E-mail: ;

Received date: 2021-04-05

  Revised date: 2021-04-29

  Online published: 2021-06-02

Supported by

Guangdong Basic and Applied Basic Research Foundation(2021A1515012342); Guangdong Provincial Science and Technology Project(2017A010103016)

摘要

2-氨基吡啶是一类重要的合成子, 具有独特的双亲核结构, 可与酮、醛、酸、多官能团酯类以及卤代芳烃等化合物反应, 以构建五元、六元含氮稠杂环. 近年来, 基于2-氨基吡啶的成环反应倍受关注. 鉴于此, 以底物种类为分类依据, 重点综述了近5年来基于2-氨基吡啶构建咪唑并[1,2-a]吡啶、吡啶并[1,2-a]嘧啶合成方法的研究进展, 总结了其在有机合成方法学、药物合成和荧光探针等领域的应用, 并展望了基于2-氨基吡啶的绿色化成环及其应用的未来发展趋势.

本文引用格式

陈淇 , 陈思鸿 , 吴汉清 , 曾晓晴 , 陈伟清 , 孙国星 , 汪朝阳 . 2-氨基吡啶在构建五元、六元氮稠环合成中的应用[J]. 有机化学, 2021 , 41(9) : 3482 -3491 . DOI: 10.6023/cjoc202104011

Abstract

2-Aminopyridine is a significant synthetic synthon, with unique dual nucleophilic structure. It can react with ketones, aldehydes, acids, multifunctional esters, halogenated aromatics and other compounds to synthesize five- and six-member azaheterocycles. In recent years, the cyclization reactions based on 2-aminopyridines have been under the spotlight. According to the different types of substrates, the research progress on the synthesis of imidazo[1,2-a]pyridines and pyrido[1,2-a]pyri- midines based on 2-aminopyridines in the past 5 years is reviewed, and its applications in organic synthesis methodology, drug synthesis and fluorescent probes are summarized. Furthermore, the development trend of green cyclization and its application based on 2-aminopyridines in the future are prospected.

参考文献

[1]
Kiefl, G. M.; Gulder, T. J. Am. Chem. Soc. 2020, 142, 20577.
[2]
Cook, X. A. F.; de Gombert, A.; McKnight, J.; Pantaine, L. R. E.; Willis, M. C. Angew. Chem., Int. Ed. 2021, 60, 11068.
[3]
Khatua, H.; Das, S. K.; Roy, S.; Chattopadhyay, B. Angew. Chem., Int. Ed. 2021, 60, 304.
[4]
Ma, S. J.; Hill, C. K.; Olen, C. L.; Hartwig, J. F. J. Am. Chem. Soc. 2021, 143, 359.
[5]
Bagdi, A. K.; Santra, S.; Monir, K.; Hajra, A. Chem. Commun. 2015, 51, 1555.
[6]
Pericherla, K.; Kaswan, P.; Pandey, K.; Kumar, A. Synthesis 2015, 47, 887.
[7]
Keiko, N. A.; Vchislo, N. V. Chem. Heterocycl. Compd. 2016, 52, 222.
[8]
Mutai, T.; Muramatsu, T.; Yoshikawa, I.; Houjou, H.; Ogura, M. Org. Lett. 2019, 21, 2143.
[9]
Wu, Y. X.; Yuan, W.; Ji, H. Y.; Qin, Y. R.; Zhang, J.; Li, H. K.; Li, Y. H.; Wang, Y.; Sun, Y. F.; Liu, W. Dyes Pigm. 2017, 142, 330.
[10]
Yang, X.-Z.; Xu, B.; Shen, L.; Sun, R.; Xu, Y.-J.; Song, Y.-L.; Ge, J.-F. Anal. Chem. 2020, 92, 3517.
[11]
Thakur, A.; Pereira, G.; Patel, C.; Chauhan, V.; Dhaked, R. K; Sharma, A. J. Mol. Struct. 2020, 1206, 127686.
[12]
Bin Sayeed, I.; Vishnuvardhan, M. V. P. S.; Nagarajan, A.; Kantevari, S.; Kamal, A. Bioorg. Chem. 2018, 80, 714.
[13]
Lawson, M.; Rodrigo, J.; Baratte, B. Robert, T.; Delehouze, C.; Lozach, O.; Ruchaud, S.; Bach, S.; Brion, J. D.; Alami, M.; Hamze, A. Eur. J. Med. Chem. 2016, 123, 105.
[14]
Campos, J. F.; Scherrmann, M. M. C.; Berteina-Raboine, S. Green Chem. 2019, 21, 1531.
[15]
Rodriguez, J. C.; Maldonado, R. A.; Ramirez-Garcia, G.; Cervantes, E. D.; de la Cruz, F. N. J. Heterocycl. Chem. 2020, 57, 2279.
[16]
Liu, Y. P; Lu, L. X.; Zhou, H. P.; Xu, F. J.; Ma, C.; Huang, Z. J.; Xu, J. Y.; Xu, S. T. RSC Adv. 2019, 9, 34671.
[17]
Wang, B.-W.; Zhou, Y.-J.; Luo, S.-H.; Luo, X.-Y.; Chen, W.-Q.; Yang, S.-M.; Wang, Z.-Y. Chin. J. Org. Chem. 2021, 41, 171. (in Chinese).
[17]
( 王柏文, 周永军, 罗时荷, 罗晓燕, 陈伟清, 杨诗敏, 汪朝阳, 有机化学, 2021, 41, 171.)
[18]
Jian, W.-Q.; Wang, H.-B.; Du, K.-S.; Zhong, W.-Q.; Huang, J.-M. ChemElectroChem 2019, 6, 2733.
[19]
Feng, M.-L.; Li, S.-Q.; He, H.-Z.; Xi, L.-Y.; Chen, S.-Y.; Yu, X.-Q. Green Chem. 2019, 21, 1619.
[20]
Yang, K.; Yao, C.; Gao, J.-J.; Chen, S.-H.; Zheng, X.-J.; Deng, L.-X.; Zheng, Y.-N.; Liu, M.-J.; Wang, Z.-Y. Chin. J. Org. Chem., 2020, 40, 4168. (in Chinese).
[20]
( 杨凯, 姚辰, 高娟娟, 陈思鸿, 郑雪洁, 邓璐璇, 张毓娜, 刘美娟, 汪朝阳, 有机化学, 2020, 40, 4168.)
[21]
Cai, Q; Liu, M. C.; Mao, B. M.; Xie, X.; Jia, F. C.; Zhu, Y. P.; Wu, A. X. Chin. Chem. Lett. 2015, 26, 881.
[22]
Meng, X.; Yu, C. Y.; Chen, G. X.; Zhao, P. Q. Catal. Sci. Technol. 2015, 5, 372.
[23]
Wang, B.-W.; Jiang, K.; Li, J.-X.; Luo, S.-H.; Wang, Z.-Y.; Jiang, H.-F. Angew. Chem., Int. Ed. 2020, 59, 2338.
[24]
Okai, H.; Tanimoto, K.; Ohkado, R.; Iida, H. Org. Lett. 2020, 22, 8002.
[25]
Bhutia, Z. T.; Panjikar, P. C.; Iyer, S.; Chatterjee, A.; Banerjee, M. ACS Omega 2020, 5, 13333.
[26]
Hu, S. P.; Du, S.Y.; Yao, Y. J.; Yang, Z.G.; Ren, H. J.; Chen, Z. K. Synlett 2019, 30, 625.
[27]
Haouchine, A. L.; Kabri, Y.; Bakhta, S.; Curti, C. Nedjar-Kolli, B.; Vanelle, P. Synth. Commun. 2018, 48, 2159.
[28]
Xie, Y. J.; Wu, J.; Che, X. Z.; Chen, Y.; Huang, H. W.; Deng, G.-J. Green Chem. 2016, 18, 667.
[29]
Nguyen, T. B.; Retailleau, P. Adv. Synth. Catal. 2017, 359, 3843.
[30]
Frett, B.; McConnell, N.; Smith, C. C. Wang, Y. X.; Shah, N. P.; Li, H.-Y. Eur. J. Med. Chem. 2015, 94, 123.
[31]
Tan, J.; Ni, P. H.; Huang, H. W.; Deng, G.-J. Org. Biomol. Chem. 2018, 16, 4227.
[32]
Zhan, H. Y.; Zhao, L. M.; Liao, J. Q.; Li, N. Y.; Chen, Q. L.; Qiu, S. X.; Cao, H. Adv. Synth. Catal. 2015, 357, 46.
[33]
Chen, Z. W.; Liang, P.; Xu, F.; Qiu, R. L.; Tan, Q.; Long, L. P.; Ye, M. J. Org. Chem. 2019, 84, 9369.
[34]
Wu, H.-Q.; Yang, K.; Chen, X.-Y.; Arulkumar, M.; Wang, N.; Chen, S.-H.; Wang, Z.-Y. Green Chem. 2021, 21, 3782.
[35]
Bhutia, Z. T.; Das, D.; Chatterjee, A.; Banerjee, M. ACS Omega 2019, 4, 4481.
[36]
Purohit, G.; Kharkwal, A.; Rawat, D. S. ACS Sustainable Chem. Eng. 2020, 8, 5544.
[37]
Rakhtshah, J.; Yaghoobi, F. Int. J. Biol. Macromol. 2019, 139, 904.
[38]
Ghorbani-Choghamarani, A.; Taherinia, Z. J. Iran. Chem. Soc. 2020, 17, 59.
[39]
Mala, R.; Suman, K.; Nandhagopal, M.; Narayanasamy, M.; Thennarasu, S. Spectrochim. Acta, Part A 2019, 222, 117236.
[40]
Soleimani, E.; Torkaman, S.; Sepahvand, H.; Ghorbani, S. Mol. Diversity 2019, 23, 739.
[41]
Heydari, M.; Azizi, N.; Mirjafari, Z.; Hashemi, M. M. J. Iran. Chem. Soc. 2019, 16, 2357.
[42]
Sun, J. W.; Yang, X. R.; Liu, Y.; Wang, Y.; Pan, Y. J. Heterocycl. Chem. 2020, 57, 1449.
[43]
Zhang, M.; Lu, J.; Zhang, J.-N.; Zhang, Z.-H. Catal. Commun. 2016, 78, 26.
[44]
Xiao, X. S.; Xie, Y.; Bai, S. Y.; Deng, Y. F.; Jiang, H. F.; Zeng, W. Org. Lett. 2015, 17, 3998.
[45]
Kumar, S.; Sharma, N.; Maurya, I. K.; Verma, A.; Kumar, S.; Bhasin, K. K.; Sharma, R. K. New J. Chem. 2017, 41, 2919.
[46]
Brar, S. K.; Kumar, S.; Pandey, S. K.; Bhasin, K. K.; Wangoo, N.; Sharma, R. K. J. Mol. Liq. 2018, 254, 208.
[47]
Kumar, S.; Sharma, N.; Maurya, I. K.; Bhasin, A. K. K.; Wangoo, N.; Brandao, P.; Felix, V.; Bhasin, K. K.; Sharma, R. K. Eur. J. Med. Chem. 2016, 123, 916.
[48]
Sarlauskas, J.; Peciukaityte-Alksne, M.; Miseviciene, L.; Maroziene, A.; Polmickaite, E.; Staniulyte, Z.; Cenas, N.; Anusevicius, Z. Bioorg. Med. Chem. Lett. 2026, 26, 512.
[49]
Karamthulla, S.; Khan, M. N.; Choudhury, L. H. RSC Adv. 2015, 5, 19724.
[50]
Ramya, P. V. S.; Guntuku, L.; Angapelly, S.; Digwal, C. S.; Lakshmi, U. J.; Sigalapalli, D. K.; Babu, B. N.; Naidu, V. G. M.; Kamal, A. Eur. J. Med. Chem. 2018, 143, 216.
[51]
Roslan, I. I.; Ng, K. H.; Chuah, G. K.; Jaenicke, S. Adv. Synth. Catal. 2016, 358, 364.
[52]
Samanta, S. K.; Bera, M. K. Org. Biomol. Chem. 2018, 17, 6441.
[53]
Rasheed, S.; Rao, D. N.; Das, P. Asian J. Org. Chem. 2016, 5, 1213.
[54]
Cheng, C.; Ge, L.; Lu, X. H.; Huang, J. P.; Huang, H. C.; Chen, J.; Cao, W. G.; Wu, X. Y. Tetrahedron 2016, 72, 6866.
[55]
Dheer, D.; Reddy, K. R.; Rath, S. K.; Sangwan, P. L.; Das, P.; Shankar, R. RSC Adv. 2016, 6, 38033.
[56]
Liu, Y.; Zhang, Y. X.; Sun, J. W. J. Heterocycl. Chem. 2019, 56, 2804.
[57]
Tran, R. Q; Jacoby, S. A.; Roberts, K. E.; Swann, W. A.; Harris, N. W.; Dinh, L. P.; Denison, E. L.; Yet, L. RSC Adv. 2019, 9, 17778.
[58]
Liu, Y.; Wang, W. H.; Han, J. W.; Sun, J. W. Org. Biomol. Chem. 2017, 15, 9311.
[59]
Li, X. W.; Wang, T. Z.; Lu, Y.-J.; Ji, S. M.; Huo, Y. P.; Liu, B. F. Org. Biomol. Chem. 2018, 16, 7143.
[60]
Mutkule, N.; Bugad, N.; Mokale, S.; Choudhari, V.; Ubale, M. J. Heterocycl. Chem. 2020, 57, 3186.
[61]
Meng, X.; Zhang, J. Q.; Chen, B. H.; Jing, Z. Q.; Zhao, P. Q. Catal. Sci. Technol. 2016, 6, 890.
[62]
Tzani, M. A.; Kallitsakis, M. G.; Symeonidis, T. S.; Lykakis, I. N. ACS Omega 2018, 3, 17947.
[63]
Nguyen, O. T. K.; Ha, P. T.; Dang, H. V.; Vo, Y. H.; Nguyen, T. T.; Le, N. T. H; Phan, N. T. S. RSC Adv. 2019, 9, 5501.
[64]
Zhai, L.-H.; Guo, L.-H.; Sun, B.-W. RSC Adv. 2015, 5, 93631.
[65]
Rao, C. Q.; Mai, S. Y.; Song, Q. L. Org. Lett. 2017, 19, 4726.
[66]
Tian, X. H.; Song, L. N.; Wang, M. M.; Lv, Z. G.; Wu, J.; Yu, W. Q.; Chang, J. B. Chem.-Eur. J. 2016, 22, 7617.
[67]
McDonald, I. M.; Peese, K. M. Org. Lett. 2015, 17, 6002.
[68]
Guchhait, S. K.; Saini, M. New J. Chem. 2020, 44, 308.
[69]
Verma, K.; Tailor, Y. K.; Khandelwal, S.; Agarwal, M.; Rushell, E.; Kumari, Y.; Awasthi, K.; Kumar, M. RSC Adv. 2018, 8, 30430.
[70]
Selvi, S.; Srinivasan, K. Eur. J. Org. Chem., 2017, 2017, 5644.
[71]
Tsoung, J.; Bogdan, A. R.; Kantor, S.; Wang, Y.; Charaschanya, M.; Djuric, S. W. J. Org. Chem. 2017, 82, 1073.
[72]
Liu, D. Y.; Zhang, J.; Zhao, L.; He, W. J.; Liu, Z. J.; Gan, X. H.; Song, B. A. J. Agric. Food Chem. 2019, 67, 11860.
[73]
Roy, A.; Kundu, M.; Dhar, P.; Chakraborty, A.; Mukherjee, S.; Naskar, J.; Rarhi, C.; Barik, R.; Mondal, S. K.; Wani, M. A.; Gajbhiye, R.; Roy, K. K.; Maiti, A.; Manna, P.; Adhikari, S. ChemistrySelect 2020, 5, 4559.
[74]
Ratni, H.; Ebeling, M.; Baird, J.; Bendels, S.; Bylund, J.; Chen, K. S.; Denk, N.; Feng, Z. H.; Green, L.; Guerard, M.; Jablonski, P.; Jacobsen, B.; Khwaja, O.; Kletzl, H.; Ko, C. P.; Kustermann, S.; Marquet, A.; Metzger, F.; Mueller, B.; Naryshkin, N. A.; Paushkin, S. V.; Pinard, E.; Poirier, A.; Reutlinger, M.; Weetall, M.; Zeller, A.; Zhao, X.; Mueller, L. J. Med. Chem. 2018, 61, 6501.
[75]
Dong, Z.; Wang, Z.; Guo, Z.-Q.; Gong, S. Z.; Zhang, T.; Liu, J.; Luo, C.; Jiang, H. L.; Yang, C.-G. J. Med. Chem. 2020, 63, 4849.
[76]
Marshall, A. J.; Lill, C. L.; Chao, M.; Kolekar, S. V.; Lee, W.-J.; Marshall, E. S.; Baguley, B. C.; Shepherd, P. R.; Denny, W. A.; Flanagan, J. U.; Rewcastle, G. W. Bioorg. Med. Chem. 2015, 23, 3796.
[77]
Stepan, A. F.; Claffey, M. M.; Reese, M. R.; Balan, G.; Barreiro, G.; Barricklow, J.; Bohanon, M. J.; Boscoe, B. P.; Cappon, G. D.; Chenard, L. K.; Cianfrogna, J.; Chen, L. G.; Coffman, K. J.; Drozda, S. E.; Dunetz, J. R.; Ghosh, S.; Hou, X. J.; Houle, C.; Karki, K.; Lazzaro, J. T.; Mancuso, J. Y.; Marcek, J. M.; Miller, E. L.; Moen, M. A.; O'Neil, S.; Sakurada, I.; Skaddan, M.; Parikh, V.; Smith, D. L.; Trapa, P.; Tuttle, J. B.; Verhoest, P. R.; Walker, D. P.; Won, A.; Wright, A. S.; Whritenour, J.; Zasadny, K.; Zaleska, M. M.; Zhang, L.; Shaffer, C. L. J. Med. Chem. 2017, 60, 7764.
[78]
Park, D.-S.; Jo, E.; Choi, J.; Lee, M.; Kim, S.; Kim, H.-Y.; Nam, J.; Ahn, S.; Hwang, J. Y.; Windisch, M. P. Eur. J. Med. Chem. 2017, 140, 65.
[79]
Jadhav, S. B.; Fatema, S.; Patil, R. B.; Sangshetti, J. N.; Farooqui, M. J. Heterocycl. Chem. 2017, 54, 3299.
[80]
Hussain, M.; Liu, J. H. Tetrahedron Lett. 2020, 61, 152269.
[81]
Mathavan, S.; Raj, A. K. D.; Yamajala, R. B. R. D. ChemistrySelect 2019, 4, 10737.
[82]
Pavithra, T.; Devi, E. S.; Nagarajan, S.; Sridharan, V.; Maheswari, C. U. Eur. J. Org. Chem. 2019, 6884.
[83]
Alanine, T. A.; Galloway, W. R. J. D.; Bartlett, S.; Ciardiello, J. J.; McGuire, T. M.; Spring, D. R. Org. Biomol. Chem. 2015, 14, 1031.
[84]
Chen, Z. W..; Wen, Y. L.; Ding, H.; Luo, G. T.; Ye, M.; Liu, L. X.; Xue, J. Tetrahedron Lett. 2017, 58, 13.
[85]
Silpa, L.; Niepceron, A.; Laurent, F.; Brossier, F.; Penichon, M.; Enguehard-Gueiffier, C.; Abarbri, M.; Silvestre, A.; Petrignet, J. Bioorg. Med. Chem. Lett. 2016, 26, 114.
[86]
Inturi, S. B.; Kalita, B.; Ahamed, A. Synth. Commun. 2018, 48, 2037.
[87]
Madar, J. M.; Shastri, L. A.; Shastri, S. L.; Holiyachi, M.; Naik, N.; Kulkarni, R.; Shaikh, F.; Sungar, V. Synth. Commun. 2018, 48, 375.
[88]
Sadeghzadeh, S. M.; Zhiani, R. J. Organomet. Chem. 2018, 868, 47.
[89]
Alsharif, Z.; Ali, M. A.; Alkhattabi, H.; Jones, D.; Delancey, E.; Ravikumar, P. C.; Alam, M. A. New J. Chem. 2017, 41, 14862.
[90]
El-Sayed, R.; Katouah, H. A. J. Heterocycl. Chem. 2019, 56, 2134.
[91]
Rao, C. B.; Zhang, N.; Hu, J. N.; Wang, Y.; Liang, Y. J.; Zhang, R.; Yuan, J. W.; Dong, D. W. J. Org. Chem. 2020, 85, 4695.
[92]
Sagir, H.; Rai, P.; Neha, S.; Singh, P. K.; Tiwari, S.; Siddiqui, I. R. RSC Adv. 2016, 6, 73924.
[93]
Guchhait, S. K.; Saini, M.; Sumkaria, D.; Chaudhary, V. Chem. Commun. 2017, 53, 6941.
[94]
Hoang, G. L.; Zoll, A. J.; Ellman, J. A. Org. Lett. 2019, 21, 3886.
[95]
Brahmachari, G.; Karmakar, I.; Nurjamal, K. ACS Sustainable Chem. Eng. 2018, 6, 11018.
[96]
Mahdavi, M.; Estabragh, R. F.; Moghimi, S.; Sayahi, M. H.; Shafiee, A.; Foroumadi, A. Synlett 2016, 27, 1359.
[97]
Liu, J. D.; Zou, J. H.; Yao, J. W.; Chen, G. S. Adv. Synth. Catal. 2018, 360, 659.
[98]
Sha, X.-L.; Niu, J.-Y.; Sun, R.; Xu, Y.-J.; Ge, J.-F. Org. Chem. Front. 2017, 5, 555.
[99]
Pham, P. H.; Doan, S. H.; Vuong, N. T. H; Nguyen, V. H. H.; Ha, P. T. M.; Phan, N. T. S. RSC Adv. 2018, 8, 20314.
[100]
Brendel, M.; Sakhare, P. R.; Dahiya, G.; Subramanian, P.; Kaliappan, K. P. J. Org. Chem. 2020, 85, 8102.
[101]
Feng, J.-B.; Wu, X.-F. Org. Biomol. Chem. 2015, 13, 10656.
[102]
Xu, T. Y.; Alper, H. Org. Lett. 2015, 17, 1569.
[103]
Yuan, Y.; Wu, X.-F. Eur. J. Org. Chem. 2019, 2172.
[104]
Fei, Z. A.; Zhu, Y.-P.; Liu, M.-C.; Jia, F.-C.; Wu, A.-X. Tetrahedron Lett. 2013, 54, 1222.
[105]
Yang, Y.; Shu, W.-M.; Yu, S.-B.; Ni, F.; Gao, M.; Wu, A.-X. Chem. Commun. 2013, 49, 1729.
[106]
Li, D.; Wang, Q.; Rao, N.; Zhang, Y.; Le, Y.; Liu, L.; Li, L. L.; Huang, L.; Yan, L. J. J. Mol. Struct. 2021, 1239, 130521.
[107]
Srivastava, S.; Thakur, N.; Singh, A.; Shukla, P.; Maikhuri, V. K.; Garg, N.; Prasad, A.; Pandey, R. RSC Adv. 2019, 9, 29856.
[108]
Liu, X.; Li, W.; Liu, H. Y.; Cao, H. Chin. J. Org. Chem., 2021, 41, 1759. (in Chinese).
[108]
( 刘想, 李文, 刘环宇, 曹华, 有机化学, 2021, 41, 1759.)
文章导航

/