综述与进展

可见光催化的Minisci反应研究进展

  • 董建洋 ,
  • 刘玉秀 ,
  • 汪清民
展开
  • 南开大学化学学院 元素有机化学国家重点实验室 南开大学有机新物质创造前沿科学中心 天津 300071

收稿日期: 2021-04-12

  修回日期: 2021-05-04

  网络出版日期: 2021-06-02

基金资助

国家自然科学基金(21732002); 国家自然科学基金(22077071); 南开大学有机新物质创造前沿科学中心专项资金(63181206)

Recent Advances in Visible-Light-Mediated Minisci Reactions

  • Jianyang Dong ,
  • Yuxiu Liu ,
  • Qingmin Wang
Expand
  • State Key Laboratory of Elemento-organic Chemistry, Frontiers Science Center for New Organic Matter of Nankai University, College of Chemistry, Nankai University, Tianjin 300071
* Corresponding author. E-mail:

Received date: 2021-04-12

  Revised date: 2021-05-04

  Online published: 2021-06-02

Supported by

National Natural Science Foundation of China(21732002); National Natural Science Foundation of China(21672117); Frontiers Science Center for New Organic Matter of Nankai University(63181206)

摘要

氮杂芳环广泛存在于天然产物、药物分子、有机材料及配体中. 通过选择性碳氢键官能团化的方式对氮杂芳环进行后期修饰具有重要意义. 在酸性和氧化条件下, 烷基自由基对氮杂芳环的加成反应, 即Minisci反应, 提供了一种合成烷基取代的含氮芳环的方法. 传统的Minisci反应往往需要过量的氧化剂、酸以及高温, 这大大限制了底物的适用范围. 随着光催化在有机合成中的快速发展, 近几年来多种光催化的Minisci反应被报道, 并被成功应用到药物的合成中. 对近年来可见光催化的Minisci反应进行了概述.

本文引用格式

董建洋 , 刘玉秀 , 汪清民 . 可见光催化的Minisci反应研究进展[J]. 有机化学, 2021 , 41(10) : 3771 -3791 . DOI: 10.6023/cjoc202104024

Abstract

N-Heteroarenes are present in a wide variety of natural products, small-molecule drugs, organic materials, and ligands. Therefore, the methods for selective C—H functionalization of N-heteroarenes are highly sought-after for late-stage modification of pharmaceuticals. A useful tool for the synthesis of alkyl-substituted nitrogen-containing aromatic rings is the Minisci reaction, in which a protonated N-heteroarene is attacked by an alkyl radical under oxidative and acidic conditions. Classic Minisci reactions often require the use of excess oxidant, excess acid, and high temperature, which greatly limits the scope of the substrates. With the rapid development of photocatalysis in organic synthesis, in recent years, a variety of photocatalytic Minisci reactions have been reported, and successfully been applied to the synthesis of drugs. In this paper, the visible light mediated Minisci reactions in recent years are briefly reviewed.

参考文献

[1]
Bhutani, P.; Joshi, G.; Raja, N.; Bachhav, N.; Rajanna, P. K.; Bhutani, H.; Paul, A. T.; Kumar, R. J. Med. Chem. 2021, 64, 2339.
[2]
Zhang, J.-R.; Xu, L.; Liao, Y.-Y.; Deng, J.-C.; Tang, R.-Y. Chin. J. Chem. 2017, 35, 271.
[3]
Proctor, R. S. J.; Phipps, R. J. Angew. Chem., nt. Ed. 2019, 58, 13666.
[4]
Duncton, M. A. J. Med. Chem. Commun. 2011, 2, 1135.
[5]
Garza-Sanchez, R. A.; Tlahuext-Aca, A.; Tavakoli, G.; Glorius, F. ACS Catal. 2017, 7, 4057.
[6]
Wang, J.; Li, G. X.; He, G.; Chen, G. Asian J. Org. Chem. 2018, 7, 1307.
[7]
Genovino, J.; Lian, Y.; Zhang, Y.; Hope, T. O.; Juneau, A.; Gagné, Y.; Ingle, G.; Frenette, M. Org. Lett. 2018, 20, 3229.
[8]
Xie, L.-Y.; Jiang, L.-L.; Tan, J.-X.; Wang, Y.; Xu, X.-Q.; Zhang, B.; Cao, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2019, 7, 14153.
[9]
Jia, W.; Jian, Y.; Huang, B.; Yang, C.; Xia, W. Synlett 2018, 29, 1881.
[10]
Lu, J.; He, X.-K.; Cheng, X.; Zhang, A.-J.; Xu, G.-Y.; Xuan, J. Adv. Synth. Catal. 2020, 362, 2178.
[11]
Candish, L.; Freitag, M.; Gensch, T.; Glorius, F. Chem. Sci. 2017, 8, 3618.
[12]
Pratsch, G.; Lackner, G. L.; Overman, L. E. J. Org. Chem. 2015, 80, 6025.
[13]
Edwards, J. T.; Merchant, R. R.; McClymont, K. S.; Knouse, K. W.; Qin, T.; Malins, L. R.; Vokits, B.; Shaw, S. A.; Bao, D.-H.; Wei, F.-L.; Zhou, T.; Eastgate, M. D.; Baran, P. S. Nature 2017, 545, 213.
[14]
Zhao, Y.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2018, 20, 224.
[15]
Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.; Wang, J.; Pan, C.-M.; Gianatassio, R.; Schmidt, M.; Eastgate, M. D.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 2174.
[16]
Cheng, W.-M.; Shang, R.; Fu, Y. ACS Catal. 2017, 7, 907.
[17]
Cheng, W.-M.; Shang, R.; Fu, M.-C.; Fu, Y. Chem. -Eur. J. 2017, 23, 2537.
[18]
Sherwood, T. C.; Li, N.; Yazdani, A. N.; Murali Dhar, T. G. J. Org. Chem. 2018, 83, 3000.
[19]
Dong, J.; Wang, X.; Song, H.; Liu, Y.; Wang, Q. Adv. Synth. Catal. 2020, 362, 2155.
[20]
Jin, S.; Geng, X.; Li, Y.; Zheng, K. Eur. J. Org. Chem. 2021, 6, 969.
[21]
Proctor, R. S. J.; Davis, H. J.; Phipps, R. J. Science 2018, 360, 419.
[22]
Liu, X.; Liu, Y.; Chai, G.; Qiao, B.; Zhao, X.; Jiang, Z. Org. Lett. 2018, 20, 6298.
[23]
Lyu, X.; Huang, S.; Song, H.; Liu, Y.; Wang, Q. Org. Lett. 2019, 21, 5728.
[24]
Fu, M.-C.; Shang, R.; Zhao, B.; Wang, B.; Fu, Y. Science 2019, 363, 1429.
[25]
Sun, A. C.; McClain, E. J.; Beatty, J. W.; Stephenson, C. R. J. Org. Lett. 2018, 2, 3487.
[26]
Jin, J.; MacMillan, D. W. C. Angew. Chem., nt. Ed. 2015, 54, 1565.
[27]
Zhang, Y.; Teuscher, K. B.; Ji, H. Chem. Sci. 2016, 7, 2111.
[28]
Devari, S.; Shah, B. A. Chem. Commun. 2016, 52, 1490.
[29]
Zhang, L.; Zhang, G.; Li, Y.; Wang, S.; Lei, A. Chem. Commun. 2018, 54, 5744.
[30]
Liang, X.-A.; Niu, L.; Wang, S.; Liu, J.; Lei, A. Org. Lett. 2019, 21, 2441.
[31]
Huff, C. A.; Cohen, R. D.; Dykstra, K. D.; Streckfuss, E.; DiRocco, D. A.; Krska, S. W. J. Org. Chem. 2016, 81, 6980.
[32]
Liu, S.; Pan, P.; Fan, H.; Li, H.; Wang, W.; Zhang, Y. Chem. Sci. 2019, 10, 3817.
[33]
Dong, J.-Y.; Xia, Q.; Luy, X.-L.; Yan, C.-C.; Song, H.-J.; Liu, Y.-X.; Wang, Q.-M. Org. Lett. 2018, 20, 5661.
[34]
Bosset, C.; Beucher, H.; Bretel, G.; Pasquier, E.; Queguiner, L.; Henry, C.; Vos, A.; Edwards, J. P.; Meerpoel, L.; Berthelot, D. Org. Lett. 2018, 20, 6003.
[35]
Grainger, R.; Heightman, T. D.; Ley, S. V.; Lima, F.; Johnson, C. N. Chem. Sci. 2019, 10, 2264.
[36]
Wang, Z.; Ji, X.; Zhao, J.; Huang, H. Green Chem. 2019, 21, 5512.
[37]
Shao, X.; Wu, X.; Wu, S.; Zhu, C. Org. Lett. 2020, 22, 7450.
[38]
Perry, I. B.; Brewer, T. F.; Sarver, P. J.; Schultz, D. M.; DiRocco, D. A.; MacMillan, D. W. C. Nature 2018, 560, 70.
[39]
Quattrini, M. C.; Fujii, S.; Yamada, K.; Fukuyama, T.; Ravelli, D.; Fagnoni, M.; Ryu, I. Chem. Commun. 2017, 53, 2335.
[40]
Li, G.-X.; Hu, X.; He, G.; Chen, G. ACS Catal. 2018, 8, 11847.
[41]
Proctor, R. S. J.; Chuentragool, P.; Colgan, A. C.; Phipps, R. J. J. Am. Chem. Soc. 2021, 143, 4928.
[42]
Wu, X.; Zhang, H.; Tang, N.; Wu, Z.; Wang, D.; Ji, M.; Xu, Y.; Wang, M.; Zhu, C. Nat. Commun. 2018, 9, 3343.
[43]
Li, G.-X.; Hu, X.; He, G.; Gong, C. Chem. Sci., 2019, 10, 688.
[44]
Tang, N.; Wu, X.; Zhu, C. Chem. Sci., 2019, 10, 6915.
[45]
Deng, Z.; Li, G.-X.; He, G.; Chen, G. J. Org. Chem. 2019, 84, 15777.
[46]
Chen, H.; Fan, W.; Yuan, X.-A.; Yu, S. Nat. Commun. 2019, 10, 4743.
[47]
Li, G.-X.; Morales-Rivera, C. A.; Wang, Y.; Gao, F.; He, G.; Liu, P.; Chen, G. Chem. Sci. 2016, 7, 6407.
[48]
Dong, J.; Yue, F.; Song, H.; Liu, Y.; Wang, Q. Chem. Commun. 2020, 56, 12652.
[49]
Matsui, J. K.; Primer, D. N.; Molander, G. A. Chem. Sci. 2017, 8, 3512.
[50]
Nguyen, T. M.; Manohar, N.; Nicewicz, D. A. Angew. Chem. Int. Ed. 2014, 53, 6198.
[51]
Matsui, J. K.; Molander, G. A. Org. Lett. 2017, 19, 950.
[52]
Yan, H.; Hou, Z.-W.; Xu, H.-C. Angew. Chem. Int. Ed. 2019, 58, 4592.
[53]
Xu, P.; Chen, P.-Y.; Xu, H.-C. Angew. Chem. Int. Ed. 2020, 59, 14275.
[54]
Lai, X.-L.; Shu, X.-M.; Song, J.; Xu, H.-C. Angew. Chem. Int. Ed. 2020, 59, 10626.
[55]
Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224.
[56]
Zhang, W.; Xiang, X.; Chen, J.; Yang, C.; Pan, Y.; Cheng, J.; Meng, Q.; Li, X. Nat. Commun. 2020 11, 638.
[57]
McCallum, T.; Barriault, L. Chem. Sci. 2016, 7, 4754.
[58]
Kim, H.; Lee, C. Angew. Chem. Int. Ed. 2012, 51, 12303.
[59]
Nuhant, P.; Oderinde, M. S.; Genovino, J.; Juneau, A.; Gagne, Y.; Allais, C.; Chinigo, G. M.; Choi, C.; Sach, N.; Bernier, W. L.; Fobian, Y. M.; Bundesmann, M. W.; Khunte, B.; Frenette, M.; Fadeyi, O. O. Angew. Chem. Int. Ed. 2017, 56, 15309.
[60]
Wang, L.; Lear, J. M.; Rafferty, S. M.; Fosu, S. C.; Nagib, D. A. Science 2018, 362, 225.
[61]
Bissonnette, N. B.; Boyd, M. J.; May, G. D.; Giroux, S.; Nuhant, P. J. Org. Chem. 2018, 83, 10933.
[62]
Wang, Z.; Dong, J.; Hao, Y.; Li, Y.; Liu, Y.; Song, H.; Wang, Q. J. Org. Chem. 2019, 84, 16245.
[63]
Dong, J.; Lyu, X.; Wang, Z.; Wang, X.; Song, H.; Liu, Y.; Wang, Q. Chem. Sci. 2019, 10, 976.
[64]
Wessig, P.; Muehling, O. Eur. J. Org. Chem. 2007, 2219.
[65]
Jin, J.; MacMillan, D. W. C. Nature 2015, 525, 87.
[66]
Liu, W.; Yang, X.; Zhou, Z.-Z.; Li, C.-J. Chem 2017, 2, 688.
[67]
McCallum, T.; Pitre, S. P.; Morin, M.; Scaiano, J. C.; Barriault, L. Chem. Sci. 2017, 8, 7412.
[68]
Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry: Part B: Reactions and Synthesis, Springer, New York, 2001.
[69]
Wang, H.; Dai, X.-J.; Li, C.-J. Nat. Chem. 2017, 9, 374.
[70]
Dong, J.; Wang, Z.; Wang, X.; Song, H.; Liu, Y.; Wang, Q. Sci. Adv. 2019, 5, eaax9955.
[71]
Cheng, X.; Lu, Z. Chin. J. Org. Chem. 2019, 39, 3312. (in Chinese)
[71]
(程骁恺, 陆展, 有机化学, 2019, 39, 3312.)
[72]
Wang, Z.; Liu, Q.; Ji, X.; Deng, G.-J.; Huang, H. ACS Catal. 2020, 10, 154.
[73]
Peng, S.; Lin, Y.; He, W. Chin. J. Org. Chem. 2020, 40, 541. (in Chinese)
[73]
(彭莎, 林英武, 何卫民, 有机化学, 2020, 40, 541.)
[74]
Ji, X.; Liu, Q.; Wang, Z.; Wang, P.; Deng, G.; Huang, H. Green Chem. 2020, 22, 8233.
[75]
Fuse, H.; Nakao, H.; Saga, Y.; Fukatsu, A.; Kondo, M.; Masaoka, S.; Mitsunuma, H.; Kanai, M. Chem. Sci. 2020, 11, 12206.
[76]
Wang, Z.; Ji, X.; Han, T.; Deng, G.; Huang, H. Adv. Synth. Catal. 2019, 361, 5643.
[77]
DiRocco, D. A.; Dykstra, K.; Krska, S.; Vachal, P.; Conway, D. V.; Tudge, M. Angew. Chem., nt. Ed. 2014, 53, 4802.
[78]
Hu, X.; Li, G.-X.; He, G.; Chen, G. Org. Chem. Front. 2019, 6, 3205.
[79]
Dou, H. J. M.; Lynch, B. M. Tetrahedron Lett. 1965, 6, 897.
[80]
Xue, D.; Jia, Z.-H.; Zhao, C.-J.; Zhang, Y.-Y.; Wang, C.; Xiao, J. Chem. -Eur. J. 2014, 20, 2960.
[81]
Ravelli, D.; Protti, S.; Fagnoni, M. Chem. Rev. 2016, 116, 9850.
[82]
Gutiérrez-Bonet, Á.; Remeur, C.; Matsui, J. K.; Molander, G. A. J. Am. Chem. Soc. 2017, 139, 12251.
[83]
Dong, J.; Yue, F.; Xu, W.; Song, H.; Liu, Y.; Wang, Q. Green Chem. 2020, 22, 5599.
[84]
Klauck, F. J. R.; James, M. J.; Glorius, F. Angew. Chem., nt. Ed. 2017, 56, 12336.
[85]
Antonietti, F.; Mele, A.; Minisci, F.; Punta, C.; Recupero, F.; Fontana, F. J. Fluorine Chem. 2004, 125, 205.
[86]
Buquoi, J. Q.; Lear, J. M.; Gu, X.; Nagib, D. A. ACS Catal. 2019, 9, 5330.
文章导航

/