研究论文

钯催化的芳酰氧基氨基甲酸酯的分子内脱羧烯丙基胺化反应

  • 李晓颖 ,
  • 李培贺 ,
  • 王峥 ,
  • 付辉 ,
  • 戴啟谱
展开
  • 北京理工大学化学与化工学院 原子分子簇科学教育部重点实验室 光电材料北京市重点实验室 北京 100081

收稿日期: 2021-04-15

  修回日期: 2021-05-15

  网络出版日期: 2021-06-02

基金资助

北京理工大学优秀青年学者研究基金(3190012211808); 北京理工大学优秀青年学者研究基金(3190012331518); 北京理工大学优秀青年学者研究基金(3190012331523); 国家自然科学基金(21871026)

Palladium-Catalyzed Intramolecular Decarboxylative Allylic Amination of Aroyloxycarbamates

  • Xiaoying Li ,
  • Peihe Li ,
  • Zheng Wang ,
  • Hui Fu ,
  • Qipu Dai
Expand
  • Beijing Key Laboratory of Photoelectronic/Electrophotonic, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081
*Corresponding author.E-mail:

Received date: 2021-04-15

  Revised date: 2021-05-15

  Online published: 2021-06-02

Supported by

Excellent Young Scholars Research Fund of Beijing Institute of Technology(3190012211808); Excellent Young Scholars Research Fund of Beijing Institute of Technology(3190012331518); Excellent Young Scholars Research Fund of Beijing Institute of Technology(3190012331523); National Natural Science Foundation of China(21871026)

摘要

烯丙基胺化合物是有机合成化学和药物化学的重要化合物之一, 其合成方法备受关注. 以芳酰氧基氨基甲酸酯为原料通过分子内脱羧一步合成了烯丙基胺化合物, 而原料芳酰氧基氨基甲酸酯可由廉价易得的羧酸和羟胺原位制备. 反应条件温和, 底物普适性好, 并且可以实现克级和吲哚的合成.

本文引用格式

李晓颖 , 李培贺 , 王峥 , 付辉 , 戴啟谱 . 钯催化的芳酰氧基氨基甲酸酯的分子内脱羧烯丙基胺化反应[J]. 有机化学, 2021 , 41(8) : 3089 -3096 . DOI: 10.6023/cjoc202104030

Abstract

Allylamine compounds are one of the important compounds in organic synthetic chemistry and pharmaceutical chemistry, the synthetic methods of which are concerned. Using aroyloxycarbamates as start material, which was prepared in situ by cheap and easy-available carboxylic acid and hydroxylamine, allylamine compounds were synthesized by decarboxylation in one step. The reaction conditions are mild and the substrate is generally applicable. Moreover, the reaction realized the synthesis of indole.

参考文献

[1]
(a) Johannsen, M.; Jørgensen, K. A. Chem. Rev. 1998, 98, 1689.
[1]
(b) Sweeney, J. B.; Ball, A. K.; Lawrence, P. A.; Sinclair, M. C.; Smith, L. J. Angew. Chem., Int. Ed. 2018, 57, 10202.
[1]
(c) Wang, D.; Yu, X.; Ge, B.; Miao, H.; Ding, Y. Chin. J. Org. Chem. 2015, 35, 676. (in Chinese)
[1]
(王大伟, 余晓丽, 葛冰洋, 苗红艳, 丁玉强, 有机化学, 2015, 35, 676.)
[1]
(d) Hu, X.; Yang, B.; Yao, W.; Wang, D. Chin. J. Org. Chem. 2018, 38, 3296. (in Chinese)
[1]
(胡昕宇, 杨伯斌, 姚玮, 王大伟, 有机化学, 2018, 38, 3296.)
[2]
(a) Shekhar, S.; Trantow, B.; Leitner, A. J. Am. Chem. Soc. 2006, 128, 11770.
[2]
(b) Trost, B. M.; Malhotra, S.; Olson, D. E.; Maruniak, A.; Du Bois, J. J. Am. Chem. Soc. 2009, 131, 4190.
[2]
(c) Uozumi, Y.; Tanaka, H.; Shibatomi, K. Org. Lett. 2004, 6, 281.
[2]
(d) Wang, X.; Guo, P.; Han, Z.; Wang, X.; Wang, Z.; Ding, K. J. Am. Chem. Soc. 2014, 136, 405.
[2]
(e) You, S. L.; Zhu, X. Z.; Luo, Y. M.; Hou, X. L.; Dai, L. X. J. Am. Chem. Soc. 2001, 123, 7471.
[2]
(f) Shi, Y.; Wu, H.; Huang, G. Org. Chem. Front. 2021, 8, 3320.
[3]
(a) Hirata, G.; Satomura, H.; Kumagae, H.; Shimizu, A.; Onodera, G.; Kimura, M. Org. Lett. 2017, 19, 6148.
[3]
(b) Jing, J.; Huo, X.; Shen, J.; Fu, J.; Meng, Q.; Zhang, W. Chem. Commun. 2017, 53, 5151.
[3]
(c) Kleij, A. W.; Guo, W.; Cai, A.; Xie, J. Angew. Chem., Int. Ed. 2017, 56, 11797.
[3]
(d) Ozawa, F.; Okamoto, H.; Kawagishi, S.; Yamamoto, S.; Minami, T.; Yoshifuji, M. J. Am.Chem. Soc. 2002, 124, 10968.
[3]
(e) Wang, X.; Wang, X.; Han, Z.; Wang, Z.; Ding, K. Org. Chem. Front. 2017, 4, 271.
[4]
Mukherjee, P.; Widenhoefer, R. A. Org. Lett. 2010, 41, 1184.
[5]
(a) Lafrance, M.; Roggen, M.; Carreira, P. D. E. M. Angew. Chem., Int. Ed. 2012, 51, 3470.
[5]
(b) Roggen, M.; Carreira, R. M. J. Am. Chem. Soc. 2010, 132, 11917.
[6]
(a) Kita, Y.; Sakaguchi, H.; Hoshimoto, Y.; Nakauchi, D.; Nakahara, Y.; Carpentier, J.-F.; Ogoshi, S.; Mashima, K. Chem.-Eur. J. 2015, 21, 14571.
[6]
(b) Sweeney, J. B.; Anthony, B.; Philippa, L.; Mackenzie, S.; Luke, S. Angew. Chem., Int. Ed. 2018, 57, 10202.
[7]
Sakuramoto, T.; Hirao, T.; Tobisu, M.; Moriuchi, T. ChemCatChem 2019, 11, 1175.
[8]
Emayavaramban, B.; Roy, M.; Sundararaju, B. Chem.-Eur. J. 2016, 22, 3952.
[9]
(a) Patel, S. J.; Jamison, T. F. Angew. Chem., nt. Ed. 2004, 43, 3941.
[9]
(b) Zhou, C. Y.; Zhu, S. F.; Wang, L. X., Zhou, Q. L. J. Am. Chem. Soc. 2010, 132, 10955.
[9]
(c) Holmes, M.; Schwartz, L. A.; Krische, M. J. Chem. Rev. 2018, 118, 6026.
[9]
(d) Liu, L.; Chen, Y.; Zhang, A.; Liu, X.; Zhang, L.; Bai, J.; Li, H.; Mao, G. Chin. J. Org. Chem. 2019, 39, 475. (in Chinese)
[9]
(刘澜涛, 陈莹莹, 张安安, 刘雪, 张丽, 白静茹, 李恒, 毛国梁, 有机化学, 2019, 39, 475.)
[9]
(e) Banerjee, D.; Junge, K.; Beller, M. Org. Chem. Front. 2014, 1, 368.
[10]
(a) Doekal, V.; Imek, M.; Draínsk, M.; Vesel, J. Chem.-Eur. J. 2018, 24, 13441.
[10]
(b) Kondoh, A.; Kamata, Y.; Terada, M. Org. Lett. 2017, 19, 1682.
[10]
(c) Mellegaard-Waetzig, S. R.; Rayabarapu, D. K.; Tunge, J. A. Synlett 2005, 2759.
[11]
(a) Li, J.; Yang, S.; Wu, W.; Jiang, H. Chem.-Asian. J. 2019, 14, 4114.
[11]
(b) Ngamnithiporn, A.; Iwayama, T.; Bartberger, M.; Stoltz, B. M. Chem. Sci. 2020, 11, 11068.
[11]
(c) Zhou, Q.; Zhang, B.; Chen, D.; Chen, R.; Jiang, H. Chin. J. Org. Chem. 2011, 31, 2181. (in Chinese)
[11]
(周其忠, 张斌, 陈丹, 陈仁尔, 蒋华江, 有机化学, 2011, 31, 2181.)
[11]
(d) Dai, J.; Wang, G.; Xu, X.; Xu, H. Chin. J. Org. Chem. 2013, 33, 2460. (in Chinese)
[11]
(戴建军, 王光祖, 徐小岚, 许华建, 有机化学, 2013, 33, 2460.)
[12]
(a) Li, J.; Yang, S.; Wu, W.; Jiang, H. Org. Chem. Front. 2020, 7, 1395.
[12]
(b) Mellegaard-Waetzig, S. R.; Rayabarapu, D. K.; Tunge, J. A. Synlett 2005, 2759.
[13]
(a) Dai, Q.; Li, P.; Ma, N.; Hu, C. Org. Lett. 2016, 18, 5560.
[13]
(b) Li, P.; Ma, N.; Wang, Z.; Dai, Q.; Hu, C. W. J. Org. Chem. 2018, 83, 8233.
[14]
Thoumazet, C.; Grützmacher, H.; Deschamps, B.; Ricard, L.; Floch, P. L. Eur. J. Inorg. Chem. 2006, 3911.
[15]
Jensen, T.; Pedersen, H.; Bang-Andersen, B.; Madsen, R.; Jrgensen, M. Angew. Chem., Int. Ed. 2008, 47, 888.
[16]
Fu, H.; Li, P.; Wang, Z.; Li, X.; Hu, C. Org. Biomol. Chem. 2020, 18, 4439.
[17]
Alexy, E. J.; Zhang, H.; Stoltz, B. M. J. Am. Chem. Soc. 2018, 140, 10109.
[18]
Jing, J.; Huo, X.; Shen, J.; Fu, J.; Meng, Q.; Zhang, W. Chem. Commun. 2017, 53, 5151.
[19]
Tao, Y.; Wang, B.; Wang, B.; Qu, L.; Qu, J. Org. Lett. 2010, 12, 2726.
[20]
Chanda, K.; ReJ, S.; Liu, S.-Y.; Huang, M. H. ChemCatChem 2015, 7, 1813.
[21]
Jensen, T.; Pedersen, H.; Bang-Andersen, B.; Madsen, R.; Jorgensen, M. Angew. Chem., Int. Ed. 2008, 47, 888.
[22]
Chen, Y.-Z.; Jiang, H.-L. Chem. Mater. 2016, 28, 6698.
[23]
Lam, J. K.; Schmidt, Y.; Vanderwal, C. D. Org. Lett. 2012, 14, 5566.
[24]
Kommi, D. N.; Jadhavar, P. S.; Kumar, D.; Chakraborti, A. K. Green Chem. 2013, 15,798.
[25]
Du, Z.; Yan, Y.; Fu, Y.; Wang, K. Asian J. Org. Chem. 2016, 5, 812.
[26]
Sweeney, J. B.; Ball, A. K.; Lawrence, P. A.; Sinclair, M. C.; Smith, L. J. Angew. Chem., Int. Ed. 2018, 57, 10202.
[27]
Repka, L. M.; Ni, R.; Reisman, R. E. J. Am. Chem. Soc. 2010, 132, 14418.
[28]
Wang, D.; Peng, X.; Wang, G.; Zhang, Y.; Guo, T.; Zhang, P. Asian J. Org. Chem. 2018, 7, 875.
[29]
Yang, S. C.; Tsai, Y. C. Organometallics 2001, 20, 763.
[30]
Everett, R. K.; Wolfe, J. P. J. Org. Chem. 2015, 80, 9041.
[31]
Yang, S. C.; Hsu, Y. C.; Gan, K. H. Tetrahedron 2006, 62, 3949.
文章导航

/