钯催化的芳酰氧基氨基甲酸酯的分子内脱羧烯丙基胺化反应
收稿日期: 2021-04-15
修回日期: 2021-05-15
网络出版日期: 2021-06-02
基金资助
北京理工大学优秀青年学者研究基金(3190012211808); 北京理工大学优秀青年学者研究基金(3190012331518); 北京理工大学优秀青年学者研究基金(3190012331523); 国家自然科学基金(21871026)
Palladium-Catalyzed Intramolecular Decarboxylative Allylic Amination of Aroyloxycarbamates
Received date: 2021-04-15
Revised date: 2021-05-15
Online published: 2021-06-02
Supported by
Excellent Young Scholars Research Fund of Beijing Institute of Technology(3190012211808); Excellent Young Scholars Research Fund of Beijing Institute of Technology(3190012331518); Excellent Young Scholars Research Fund of Beijing Institute of Technology(3190012331523); National Natural Science Foundation of China(21871026)
李晓颖 , 李培贺 , 王峥 , 付辉 , 戴啟谱 . 钯催化的芳酰氧基氨基甲酸酯的分子内脱羧烯丙基胺化反应[J]. 有机化学, 2021 , 41(8) : 3089 -3096 . DOI: 10.6023/cjoc202104030
Allylamine compounds are one of the important compounds in organic synthetic chemistry and pharmaceutical chemistry, the synthetic methods of which are concerned. Using aroyloxycarbamates as start material, which was prepared in situ by cheap and easy-available carboxylic acid and hydroxylamine, allylamine compounds were synthesized by decarboxylation in one step. The reaction conditions are mild and the substrate is generally applicable. Moreover, the reaction realized the synthesis of indole.
[1] | (a) Johannsen, M.; Jørgensen, K. A. Chem. Rev. 1998, 98, 1689. |
[1] | (b) Sweeney, J. B.; Ball, A. K.; Lawrence, P. A.; Sinclair, M. C.; Smith, L. J. Angew. Chem., Int. Ed. 2018, 57, 10202. |
[1] | (c) Wang, D.; Yu, X.; Ge, B.; Miao, H.; Ding, Y. Chin. J. Org. Chem. 2015, 35, 676. (in Chinese) |
[1] | (王大伟, 余晓丽, 葛冰洋, 苗红艳, 丁玉强, 有机化学, 2015, 35, 676.) |
[1] | (d) Hu, X.; Yang, B.; Yao, W.; Wang, D. Chin. J. Org. Chem. 2018, 38, 3296. (in Chinese) |
[1] | (胡昕宇, 杨伯斌, 姚玮, 王大伟, 有机化学, 2018, 38, 3296.) |
[2] | (a) Shekhar, S.; Trantow, B.; Leitner, A. J. Am. Chem. Soc. 2006, 128, 11770. |
[2] | (b) Trost, B. M.; Malhotra, S.; Olson, D. E.; Maruniak, A.; Du Bois, J. J. Am. Chem. Soc. 2009, 131, 4190. |
[2] | (c) Uozumi, Y.; Tanaka, H.; Shibatomi, K. Org. Lett. 2004, 6, 281. |
[2] | (d) Wang, X.; Guo, P.; Han, Z.; Wang, X.; Wang, Z.; Ding, K. J. Am. Chem. Soc. 2014, 136, 405. |
[2] | (e) You, S. L.; Zhu, X. Z.; Luo, Y. M.; Hou, X. L.; Dai, L. X. J. Am. Chem. Soc. 2001, 123, 7471. |
[2] | (f) Shi, Y.; Wu, H.; Huang, G. Org. Chem. Front. 2021, 8, 3320. |
[3] | (a) Hirata, G.; Satomura, H.; Kumagae, H.; Shimizu, A.; Onodera, G.; Kimura, M. Org. Lett. 2017, 19, 6148. |
[3] | (b) Jing, J.; Huo, X.; Shen, J.; Fu, J.; Meng, Q.; Zhang, W. Chem. Commun. 2017, 53, 5151. |
[3] | (c) Kleij, A. W.; Guo, W.; Cai, A.; Xie, J. Angew. Chem., Int. Ed. 2017, 56, 11797. |
[3] | (d) Ozawa, F.; Okamoto, H.; Kawagishi, S.; Yamamoto, S.; Minami, T.; Yoshifuji, M. J. Am.Chem. Soc. 2002, 124, 10968. |
[3] | (e) Wang, X.; Wang, X.; Han, Z.; Wang, Z.; Ding, K. Org. Chem. Front. 2017, 4, 271. |
[4] | Mukherjee, P.; Widenhoefer, R. A. Org. Lett. 2010, 41, 1184. |
[5] | (a) Lafrance, M.; Roggen, M.; Carreira, P. D. E. M. Angew. Chem., Int. Ed. 2012, 51, 3470. |
[5] | (b) Roggen, M.; Carreira, R. M. J. Am. Chem. Soc. 2010, 132, 11917. |
[6] | (a) Kita, Y.; Sakaguchi, H.; Hoshimoto, Y.; Nakauchi, D.; Nakahara, Y.; Carpentier, J.-F.; Ogoshi, S.; Mashima, K. Chem.-Eur. J. 2015, 21, 14571. |
[6] | (b) Sweeney, J. B.; Anthony, B.; Philippa, L.; Mackenzie, S.; Luke, S. Angew. Chem., Int. Ed. 2018, 57, 10202. |
[7] | Sakuramoto, T.; Hirao, T.; Tobisu, M.; Moriuchi, T. ChemCatChem 2019, 11, 1175. |
[8] | Emayavaramban, B.; Roy, M.; Sundararaju, B. Chem.-Eur. J. 2016, 22, 3952. |
[9] | (a) Patel, S. J.; Jamison, T. F. Angew. Chem., nt. Ed. 2004, 43, 3941. |
[9] | (b) Zhou, C. Y.; Zhu, S. F.; Wang, L. X., Zhou, Q. L. J. Am. Chem. Soc. 2010, 132, 10955. |
[9] | (c) Holmes, M.; Schwartz, L. A.; Krische, M. J. Chem. Rev. 2018, 118, 6026. |
[9] | (d) Liu, L.; Chen, Y.; Zhang, A.; Liu, X.; Zhang, L.; Bai, J.; Li, H.; Mao, G. Chin. J. Org. Chem. 2019, 39, 475. (in Chinese) |
[9] | (刘澜涛, 陈莹莹, 张安安, 刘雪, 张丽, 白静茹, 李恒, 毛国梁, 有机化学, 2019, 39, 475.) |
[9] | (e) Banerjee, D.; Junge, K.; Beller, M. Org. Chem. Front. 2014, 1, 368. |
[10] | (a) Doekal, V.; Imek, M.; Draínsk, M.; Vesel, J. Chem.-Eur. J. 2018, 24, 13441. |
[10] | (b) Kondoh, A.; Kamata, Y.; Terada, M. Org. Lett. 2017, 19, 1682. |
[10] | (c) Mellegaard-Waetzig, S. R.; Rayabarapu, D. K.; Tunge, J. A. Synlett 2005, 2759. |
[11] | (a) Li, J.; Yang, S.; Wu, W.; Jiang, H. Chem.-Asian. J. 2019, 14, 4114. |
[11] | (b) Ngamnithiporn, A.; Iwayama, T.; Bartberger, M.; Stoltz, B. M. Chem. Sci. 2020, 11, 11068. |
[11] | (c) Zhou, Q.; Zhang, B.; Chen, D.; Chen, R.; Jiang, H. Chin. J. Org. Chem. 2011, 31, 2181. (in Chinese) |
[11] | (周其忠, 张斌, 陈丹, 陈仁尔, 蒋华江, 有机化学, 2011, 31, 2181.) |
[11] | (d) Dai, J.; Wang, G.; Xu, X.; Xu, H. Chin. J. Org. Chem. 2013, 33, 2460. (in Chinese) |
[11] | (戴建军, 王光祖, 徐小岚, 许华建, 有机化学, 2013, 33, 2460.) |
[12] | (a) Li, J.; Yang, S.; Wu, W.; Jiang, H. Org. Chem. Front. 2020, 7, 1395. |
[12] | (b) Mellegaard-Waetzig, S. R.; Rayabarapu, D. K.; Tunge, J. A. Synlett 2005, 2759. |
[13] | (a) Dai, Q.; Li, P.; Ma, N.; Hu, C. Org. Lett. 2016, 18, 5560. |
[13] | (b) Li, P.; Ma, N.; Wang, Z.; Dai, Q.; Hu, C. W. J. Org. Chem. 2018, 83, 8233. |
[14] | Thoumazet, C.; Grützmacher, H.; Deschamps, B.; Ricard, L.; Floch, P. L. Eur. J. Inorg. Chem. 2006, 3911. |
[15] | Jensen, T.; Pedersen, H.; Bang-Andersen, B.; Madsen, R.; Jrgensen, M. Angew. Chem., Int. Ed. 2008, 47, 888. |
[16] | Fu, H.; Li, P.; Wang, Z.; Li, X.; Hu, C. Org. Biomol. Chem. 2020, 18, 4439. |
[17] | Alexy, E. J.; Zhang, H.; Stoltz, B. M. J. Am. Chem. Soc. 2018, 140, 10109. |
[18] | Jing, J.; Huo, X.; Shen, J.; Fu, J.; Meng, Q.; Zhang, W. Chem. Commun. 2017, 53, 5151. |
[19] | Tao, Y.; Wang, B.; Wang, B.; Qu, L.; Qu, J. Org. Lett. 2010, 12, 2726. |
[20] | Chanda, K.; ReJ, S.; Liu, S.-Y.; Huang, M. H. ChemCatChem 2015, 7, 1813. |
[21] | Jensen, T.; Pedersen, H.; Bang-Andersen, B.; Madsen, R.; Jorgensen, M. Angew. Chem., Int. Ed. 2008, 47, 888. |
[22] | Chen, Y.-Z.; Jiang, H.-L. Chem. Mater. 2016, 28, 6698. |
[23] | Lam, J. K.; Schmidt, Y.; Vanderwal, C. D. Org. Lett. 2012, 14, 5566. |
[24] | Kommi, D. N.; Jadhavar, P. S.; Kumar, D.; Chakraborti, A. K. Green Chem. 2013, 15,798. |
[25] | Du, Z.; Yan, Y.; Fu, Y.; Wang, K. Asian J. Org. Chem. 2016, 5, 812. |
[26] | Sweeney, J. B.; Ball, A. K.; Lawrence, P. A.; Sinclair, M. C.; Smith, L. J. Angew. Chem., Int. Ed. 2018, 57, 10202. |
[27] | Repka, L. M.; Ni, R.; Reisman, R. E. J. Am. Chem. Soc. 2010, 132, 14418. |
[28] | Wang, D.; Peng, X.; Wang, G.; Zhang, Y.; Guo, T.; Zhang, P. Asian J. Org. Chem. 2018, 7, 875. |
[29] | Yang, S. C.; Tsai, Y. C. Organometallics 2001, 20, 763. |
[30] | Everett, R. K.; Wolfe, J. P. J. Org. Chem. 2015, 80, 9041. |
[31] | Yang, S. C.; Hsu, Y. C.; Gan, K. H. Tetrahedron 2006, 62, 3949. |
/
〈 |
|
〉 |