研究论文

三价磷介导的分子内环丙烷化反应及环丙烷并[c]香豆素的合成

  • 仇裕鹤 ,
  • 鲁康辉 ,
  • 韦邦尺 ,
  • 潜振凯 ,
  • 贺峥杰
展开
  • a 南开大学化学学院 元素有机化学国家重点实验室 天津 300071
    b 天津化学化工协同创新中心 天津 300071
† 共同第一作者

收稿日期: 2021-04-17

  修回日期: 2021-05-07

  网络出版日期: 2021-06-02

基金资助

国家自然科学基金(21472096); 国家自然科学基金(J1103308)

PIII-Mediated Intramolecular Cyclopropanation and Synthesis of Cyclopropa[c]coumarins

  • Yuhe Qiu ,
  • Kanghui Lu ,
  • Bangchi Wei ,
  • Zhenkai Qian ,
  • Zhengjie He
Expand
  • a State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071
    b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071
† These authors contributed equally to this work.
* Corresponding author. E-mail:

Received date: 2021-04-17

  Revised date: 2021-05-07

  Online published: 2021-06-02

Supported by

National Natural Science Foundation of China(21472096); National Natural Science Foundation of China(J1103308)

摘要

在P(NMe2)3作用下, 含有α,β-不饱和酮结构单元的苯甲酰甲酸酯顺利发生分子内环丙烷化反应, 以中等至良好的收率生成环丙烷并[c]香豆素. 在优化的反应条件下, 该反应展示了较宽的底物适用范围和优秀的立体选择性, 从而为环丙烷并[c]香豆素的合成提供了简便高效的方法.

本文引用格式

仇裕鹤 , 鲁康辉 , 韦邦尺 , 潜振凯 , 贺峥杰 . 三价磷介导的分子内环丙烷化反应及环丙烷并[c]香豆素的合成[J]. 有机化学, 2021 , 41(10) : 4066 -4074 . DOI: 10.6023/cjoc202104036

Abstract

Under the treatment of P(NMe2)3, benzoylformates bearing an α,β-unsaturated ketone unit readily underwent an intramolecular cyclopropanation reaction, producing the corresponding cyclopropa[c]coumarins in moderate to good yields. Under the optimized conditions, the reaction exhibited a wide scope of substrates and excellent stereoselectivity, thus provides a facile and efficient method for the synthesis of cyclopropa[c]coumarins.

参考文献

[1]
For selected recent reviews, see: (a) Hu, X.-L.; Gao, C.; Xu, Z.; Liu, M.-L.; Feng, L.-S.; Zhang, G.-D. Curr. Top. Med. Chem. 2018, 18, 114.
[1]
(b) Srikrishna, D.; Godugu, C.; Dubey, P. K. Mini-Rev. Med. Chem. 2018, 18, 113.
[1]
(c) Liu, S.; Yuan, J.; Qu, L. Chin. J. Org. Chem. 2018, 38, 316. (in Chinese)
[1]
(刘帅楠, 袁金伟, 屈凌波, 有机化学, 2018, 38, 316.)
[1]
(d) Cao, D.; Liu, Z.; Verwilst, P.; Koo, S.; Jangjili, P.; Kim, J. S.; Lin, W. Chem. Rev. 2019, 119, 10403.
[1]
(e) Shi, L.; Li, Z.; Cui, X.; Zhu, T.; Pang, X.; Li, L.; Luo, D.; Liu, F.; Zhao, B.; Long, Y.; Zhang, S. Chin. J. Org. Chem. 2020, 40, 1598. (in Chinese)
[1]
(时蕾, 李子秋, 崔鑫鑫, 朱挺, 庞晓静, 李龙辉, 罗德福, 刘方芳, 赵冰玉, 龙跃, 张赛扬, 有机化学, 2020, 40, 1598.)
[1]
(f) Kasperkiewicz, K.; Ponczek, M. B.; Owczarek, J.; Guga, P.; Budzisz, E. Molecules 2020, 25, 1465.
[2]
For selected recent reviews, see: (a) Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem., Int. Ed. 2014, 53, 5504.
[2]
(b) Ebner, C.; Carreira, E. M. Chem. Rev. 2017, 117, 11651.
[2]
(c) Dian, L.; Marek, I. Chem. Rev. 2018, 118, 8415.
[2]
(d) Jin, W.; Yuan, H.; Tang, G. Chin. J. Org. Chem. 2018, 38, 2324. (in Chinese)
[2]
(金文兵, 袁华, 唐功利, 有机化学, 2018, 38, 2324.)
[2]
(e) Wu, W.; Lin, Z.; Jiang, H. Org. Biomol. Chem. 2018, 16, 7315.
[2]
(f) Wan, L.; Wang, H. Chemistry 2019, 82, 963. (in Chinese)
[2]
(万灵子, 王晗, 化学通报, 2019, 82, 963.)
[3]
Stefanachi, A.; Leonetti, F.; Pisani, L.; Catto, M.; Carotti, A. Molecules 2018, 23, 250.
[4]
(a) Tsuchida, H.; Tamura, M.; Hasegawa, E. J. Org. Chem. 2009, 74, 2467.
[4]
(b) Lee, J.; Ko, K. M.; Kim, S. G. Eur. J. Org. Chem. 2018, 2018, 4166.
[5]
(a) Widman, O; Dtsch, B. Ber. Dtsch. Chem. Ges. 1918, 51, 533.
[5]
(b) Widman, O. Ber. Dtsch. Chem. Ges. 1918, 51, 907.
[6]
(a) Bojilova, A.; Videnova, I.; Ivanov, C.; Rodios, N. A.; Terzis, A.; Raptopoulou, C. P. Tetrahedron 1994, 50, 13023.
[6]
(b) Allouche, E. M. D.; Charette, A. B. Chem. Sci. 2019, 10, 3802.
[7]
(a) Shchepin, V. V.; Kalyuzhnyi, M. M.; Silaichev, P. S.; Russkikh, N. Y.; Shchepin, R. V.; Ezhikova, M. A.; Kodess, M. I. Russ. J. Org. Chem. 2004, 40, 1353.
[7]
(b) Shchepin, V. V.; Silaichev, P. S.; Vakhrin, M. I.; Russkikh, N. Y. Russ. J. Org. Chem. 2005, 41, 1219.
[7]
(c) Shchepin, V. V.; Silaichev, P. S.; Stepanyan, Y. G.; Kalyuzhnyi, M. M.; Russkikh, N. Y.; Kodess, M. I. Russ. J. Org. Chem. 2006, 42, 973.
[7]
(d) Shchepin, V. V.; Silaichev, P. S.; Kodess, M. I. Russ. J. Org. Chem. 2007, 43, 1441.
[8]
Guo, J.; Liu, Y.; Li, X.; Liu, X.; Lin, L.; Feng, X. Chem. Sci. 2016, 7, 2717.
[9]
(a) Yamashita, M.; Okuyama, K.; Kawajiri, T.; Takada, A.; Inagaki, Y.; Nakano, H.; Tomiyama, M.; Ohnaka, A.; Terayama, I.; Kawasaki, I.; Ohta, S. Tetrahedron 2002, 58, 1497.
[9]
(b) Meng, X.-S.; Jiang, S.; Xu, X.-Y.; Wu, Q.-X.; Gu, Y.-C.; Shi, D.-Q. Eur. J. Org. Chem. 2016, 2016, 4778.
[10]
(a) Bojilova, A.; Trendafilova, A.; Ivanov, C.; Rodios, N. A. Tetrahedron 1993, 49, 2275.
[10]
(b) Sun, J.-C.; Li, J.-L.; Ji, C.-B.; Peng, Y.-Y.; Zeng, X.-P. Tetrahedron 2020, 76, 130852.
[10]
(c) Sun, J. C.; Wang, X. H.; Ji, C. B.; Peng, Y. Y.; Zeng, X. P. J. Org. Chem. 2020, 85, 14963.
[11]
Wawzonek, S.; Morreal, C. E. J. Am. Chem. Soc. 1960, 82, 439.
[12]
Fuerst, D. E.; Stoltz, B. M.; Wood, J. L. Org. Lett. 2000, 2, 3521.
[13]
Huang, X.; Klimczyk, S.; Veiros, L. F.; Maulide, N. Chem. Sci. 2013, 4, 1105.
[14]
Murai, M.; Mizuta, C.; Taniguchi, R.; Takai, K. Org. Lett. 2017, 19, 6104.
[15]
Ivanova, O.; Andronov, V.; Levina, I.; Chagarovskiy, A.; Voskressensky, L.; Trushkov, I. Molecules 2019, 24, 57.
[16]
(a) Kukhtin, V. A. Dokl. Akad. Nauk. SSSR 1958, 121, 466.
[16]
(b) Ramirez, F. Acc. Chem. Res. 1968, 1, 168.
[16]
(c) Osman, F. H.; EI-Samahy, F. A. Chem. Rev. 2002, 102, 629.
[16]
(d) Liu, Y.-Y.; Sun, F.-N.; He, Z. Tetrahedron Lett. 2018, 59, 4136.
[17]
(a) Corre, E.; Foucaud, A. J. Chem. Soc. D 1971, 570, 1585.
[17]
(b) Fauduet, H.; Burgada, R. Synthesis 1980, 642.
[17]
(c) Liu, X.-F.; Guan, W.-C.; Ke, W.-S. J. Brazil. Chem. Soc. 2007, 18, 1322.
[17]
(d) Hormann, F.; Hirsch, A. Chem.-Eur. J. 2013, 19, 3188.
[17]
(e) Romanova, I. P.; Bogdanov, A. V.; Mironov, V. F.; Shaikhutdinova, G. R.; Larionova, O. A.; Latypov, S. K.; Balandina, A. A.; Yakhvarov, D. G.; Gubaidullin, A. T.; Saifina, A. F.; Sinyashin, O. G. J. Org. Chem. 2011, 76, 2548.
[17]
(f) Zhou, R.; Yang, C.; Liu, Y.; Li, R.; He, Z. J. Org. Chem. 2014, 79, 10709.
[17]
(g) Wilson, E. E.; Rodriguez, K. X.; Ashfeld, B. L. Tetrahedron 2015, 71, 5765.
[17]
(h) Sabir, S.; Kumar, G.; Jat, J. L. Asian J. Org. Chem. 2017, 6, 782.
[17]
(i) Pellissier, H. Adv. Synth. Catal. 2014, 356, 1899.
[17]
(j) Jiang, J.; Liu, H.; Lu, C.-D.; Xu, Y.-J. J. Org. Chem. 2017, 82, 811.
[17]
(k) Zhou, R.; Zhang, H.-H.; Liu, J.-L.; Liu, R.-F.; Gao, W.-C.; Qiao, Y.; Li, R.-F. J. Org. Chem. 2018, 83, 8272.
[17]
(l) Deng, Y.-H.; Chu, W.-D.; Shang, Y.-H.; Yu, K.-Y.; Jia, Z.-L.; Fan, C.-A. Org. Lett. 2020, 22, 8376.
[17]
(m) Zhang, J; Hao, J.; Huang, Z.; Han, J.; He, Z. Chem. Commun. 2020, 56, 10251.
[18]
(a) Zhou, R.; Zhang, K.; Chen, Y.-S.; Meng, Q.; Li, Y.-Y.; Li, R.-F.; He, Z. Chem. Commun. 2015, 51, 14663.
[18]
(b) Zhou, R.; Zhang, K.; Han, L.; Chen, Y.-S.; Li, R.-F.; He, Z. Chem.-Eur. J. 2016, 22, 5883.
[18]
(c) Rodriguez, K. X.; Vail, J. D.; Ashfeld, B. L. Org. Lett. 2016, 18, 4514.
[18]
(d) Zhang, L.; Lu, H.; Xu, G.-Q.; Wang, Z.-Y.; Xu, P.-F. J. Org. Chem. 2017, 82, 5782.
[18]
(e) Huang, H.-W.; Li, F.-F.; Xu, Z.-H.; Cai, J.-H.; Ji, X.-C.; Deng, G.-J. Adv. Synth. Catal. 2017, 359, 3102.
[18]
(f) Han, X.-Y.; Dong, L.; Geng, C.-W.; Jiao, P. Org. Lett. 2015, 17, 3194.
[18]
(g) Liu, Y.; Li, H.; Zhou, X.; He, Z. J. Org. Chem. 2017, 82, 10997.
[18]
(h) Zhou, R.; Han, L.; Zhang, H.-H.; Liu, R.-F.; Li, R. Adv. Synth. Catal. 2017, 359, 3977.
[18]
(i) Eckert, K. E.; Ashfeld, B. L. Org. Lett. 2018, 20, 2315.
[18]
(j) Tan, P.-W.; Wang, S. R. Org. Lett. 2019, 21, 6029.
[18]
(k) Wang, S. R.; Radosevich, A. T. Org. Lett. 2013, 15, 1926.
[19]
(a) Harpp, D. N.; Mathiaparanam, P. J. Org. Chem. 1971, 36, 2540.
[19]
(b) Zhao, W.; Yan, P. K.; Radosevich, A. T. J. Am. Chem. Soc. 2015, 137, 616.
[19]
(c) Zhang, W.-Z.; Xia, T.; Yang, X.-T.; Lu, X. Chem. Commun. 2015, 51, 6175.
[19]
(d) Zhou, R.; Liu, R.-F.; Zhang, K.; Han, L.; Zhang, H.-H.; Gao, W.-C.; Li, R. Chem. Commun. 2017, 53, 6860.
[20]
(a) Ramirez, F.; Madan, O. P.; Smith, C. P. J. Am. Chem. Soc. 1965, 87, 670.
[20]
(b) Zhang, W.; Shi, M. Chem. Commun. 2006, 1218.
[20]
(c) Wang, S. R.; Radosevich, A. T. Org. Lett. 2015, 17, 3810.
[21]
(a) Bogdanov, A. V.; Mironov, V. F.; Musin, L. I.; Musin, R. Z. Synthesis 2010, 3268.
[21]
(b) Chavannavar, A. P.; Oliver, A. G.; Ashfeld, B. L. Chem. Commun. 2014, 50, 10853.
[21]
(c) Haugen, K. C.; Rodriguez, K. X.; Chavannavar, A. P.; Oliver, A. G.; Ashfeld, B. L. Tetrahedron Lett. 2015, 56, 3527.
[22]
(a) Jin, S.; Dang, H. T.; Haug, G. C.; Nguyen, V. D.; Larionov, O. V. Chem. Sci. 2020, 11, 9101.
[22]
(b) Choi, G.; Kim, H. E.; Hwang, S.; Jang, H.; Chung, W. J. Org. Lett. 2020, 22, 4190.
[22]
(c) Zhang, J.; Qiu, Y.; Zhang, B.; Huang, Z.; He, Z. Org. Lett. 2021, 23, 1880.
[22]
(d) Tan, P.; Wang, H.; Wang, S. R. Org. Lett. 2021, 23, 2590.
文章导航

/