研究论文

5-苯基-1,3,4-噻二唑衍生物的合成及含SH2结构域蛋白酪氨酸磷酸酶1 (SHP1)抑制活性研究

  • 于丽杰 ,
  • 冯勃 ,
  • 王智佳 ,
  • 高立信 ,
  • 张纯 ,
  • Rajendran Satheeshkumar ,
  • 李佳 ,
  • 周宇波 ,
  • 王文龙
展开
  • a 江南大学药学院 江苏无锡 214122
    b 中国科学院上海药物研究所 国家新药筛选中心 上海 201203
    c 中国科学院药物创新研究院中山研究院 广东中山 528400
    d 南京大学化学化工学院 南京 210023
† 共同第一作者

收稿日期: 2021-04-18

  修回日期: 2021-05-19

  网络出版日期: 2021-06-02

基金资助

国家自然科学基金(21772068); 国家自然科学基金(81773779); 江苏省研究生科研与实践创新计划(KYCX20-1965); 江苏省自然科学基金(BK20190608)

Synthesis of 5-Phenyl-1,3,4-thiadiazole Derivatives and Their Biochemical Evaluation against Src Homology 2 Domain-Containing Protein Tyrosine Phosphatase 1 (SHP1)

  • Lijie Yu ,
  • Bo Feng ,
  • Zhijia Wang ,
  • Lixin Gao ,
  • Chun Zhang ,
  • Rajendran Satheeshkumar ,
  • Jia Li ,
  • Yubo Zhou ,
  • Wenlong Wang
Expand
  • a School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122
    b National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203
    c Zhongshan Institute for Drug Discovery, Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan, Guangdong 528400
    d School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023
† (These authors contributed equally to this work).
*Corresponding authors.E-mail: ;

Received date: 2021-04-18

  Revised date: 2021-05-19

  Online published: 2021-06-02

Supported by

National Natural Science Foundation of China(21772068); National Natural Science Foundation of China(81773779); Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX20-1965); Natural Science Foundation of Jiangsu Province(BK20190608)

摘要

作为细胞信号转导通路的关键节点分子, 含SH2结构域蛋白酪氨酸磷酸酶1 (SHP1)是潜在的抗肿瘤靶点. 已知的SHP1抑制剂屈指可数. 设计并合成了11个5-苯基-1,3,4-噻二唑衍生物. 活性测试结果表明, 部分衍生物对SHP1显示了一定强度的抑制活性. 其中, 化合物5b [IC50=(1.33±0.16) μmol/L]对SHP1显示了中等强度的抑制活性, 对PTP1B和TCPTP不显示抑制活性, 对SHP2显示了2倍的选择性, 为发现新型SHP1抑制剂提供了新的骨架类型.

本文引用格式

于丽杰 , 冯勃 , 王智佳 , 高立信 , 张纯 , Rajendran Satheeshkumar , 李佳 , 周宇波 , 王文龙 . 5-苯基-1,3,4-噻二唑衍生物的合成及含SH2结构域蛋白酪氨酸磷酸酶1 (SHP1)抑制活性研究[J]. 有机化学, 2021 , 41(8) : 3097 -3105 . DOI: 10.6023/cjoc202104041

Abstract

The Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1) is a convergent node for oncogenic cell-signaling cascades. Consequently, SHP1 represents a potential target for drug development in cancer treatment. Meanwhile only countable SHP1 inhibitors have been reported. A new type of SHP1 inhibitors with 5-phenyl-1,3,4-thiadiazole scaffold was developed. The representative compound 5b exhibited SHP1 inhibitory activity with IC50 of (1.33±0.16) μmol/L, exhibited about 2-fold selectivity for SHP1 over SHP2, and had no detectable activity against PTP1B and TCPTP, and offered a novel scaffold to develop new SHP1 inhibitors.

参考文献

[1]
Tonks, N. K. FEBS J. 2013, 280, 346.
[2]
Hendriks, W.; Elson, A.; Harroch, S.; Pulido, R.; Stoker, A.; Hertog, J. D. FEBS J. 2013, 280, 708.
[3]
Frankson, R.; Yu, Z. H.; Bai, Y.; Li, Q.; Zhang, R. Y.; Zhang, Z. Y. Cancer Res. 2017, 77, 5701.
[4]
Varone, A.; Spano, D.; Corda, D. Front. Oncol. 2020, 10, 935.
[5]
Sandur, S. K.; Pandey, M. K.; Sung, B.; Aggarwal, B. B. Mol. Cancer Res. 2010, 8, 107.
[6]
Sharma, Y.; Bashir, S.; Bhardwaj, P.; Ahmad, A.; Khan, F. Immunol. Res. 2016, 64, 804.
[7]
Yuan, X.; Bu, H.; Zhou, J.; Yang, C. Y.; Zhang, H. J. Med. Chem. 2020, 63, 11368
[8]
Dempke, W. M.; Peter, U.; Klaus, F.; Timothy, C. Oncology 2018, 95, 1.
[9]
Song, M.; Park, J. E.; Park, S. G.; Lee, D. H.; Choi, H. K.; Park, B. C. Biochem. Biophys. Res. Commun. 2009, 381, 491.
[10]
Kundu, S.; Fan, K.; Cao, M.; Lindner, D. J.; Zhao, Z. J.; Borden, E.; Yi, T. L. J. Immunol. 2010, 184, 6529.
[11]
Arabaci, G.; Yi, T.; Fu, H.; Porter, M. E.; Beebe, K. D.; Pei, D. Bioorg. Med. Chem. Lett. 2002, 12, 3047.
[12]
Yi, T.; Elson, P.; Mitsuhashi, M.; Jacobs, B.; Hollovary, E.; Budd, G. T.; Spiro, T.; Triozzi, E.; Borden, E. C. Oncotarget 2011, 2, 1155.
[13]
Lu, L.; Wang, S.; Zhu, M.; Liu, Z.; Guo, M.; Xing, S.; Fu, X. Biometals 2010, 23, 1139.
[14]
Wang, Q.; Zhu, M.; Lu, L.; Yuan, C.; Fu, X. Dalton. Trans. 2011, 40, 12926.
[15]
Akiba, H.; Sumaoka, J.; Hamakubo, T.; Komiyama, M. Anal. Bioanal. Chem. 2014, 406, 2957.
[16]
Frija, L.; Pombeiro, A.; Kopylovich, M. N. Eur. J. Org. Chem. 2017, 19, 2670.
[17]
Yang, H.; Li, C. Y.; Wang, X. M.; Yang, Y. H.; Zhu, H. L. Chem. Rev. 2014. 45, 5572.
[18]
Wang, W. L.; Yang, D. L.; Gao, L. X.; Tang, C. L.; Ma, W. P.; Ye, H. H.; Zhang, S. Q.; Zhao, Y. N.; Xu, H. J.; Hu, Z.; Chen, X.; Fan, W. H.; Chen, H. J.; Li, J. Y.; Nan, F. J.; Li, J.; Feng, B. N. Molecules 2013, 19, 102.
[19]
Wang, W.L; Chen, X.; Gao, L.X; Sheng, L.; Li, J. Y.; Li, J.; Feng, B. N. Chem. Biol. Drug Des. 2015, 86, 1161.
[20]
Satheeshkumar, R.; Zhu, R.; Feng, B.; Huang, C.; Gao, Y.; Gao, L. X.; Shen, C.; Hou, T. J.; Xu, L.; Li, J.; Zhu, Y. L.; Zhou, Y. B.; Wang, W. L. Bioorg. Med. Chem. Lett. 2020, 30, 127170.
[21]
Wang, W. L.; Chen, X. Y.; Gao, Y.; Gao, L. X.; Sheng, L.; Zhu, J. Y.; Xu, L.; Ding, Z. Z.; Zhang, C.; Li, J. Y.; Li, J.; Zhou, Y. B. Bioorg. Med. Chem. Lett. 2017, 27, 5154.
[22]
Wang, W. L.; Huang, C.; Gao, L. X.; Tang, C. L.; Wang, J. Q.; Wu, M. C.; Sheng, L.; Chen, H. J.; Nan, F. J.; Li, J. Y.; Feng, B. N. Bioorg. Med. Chem. Lett. 2014, 24, 1889.
[23]
Wang, W. L.; Luo, H.; Gao, Y.; Gao, L. X.; Sheng, L.; Zhou, Y. B.; Li, J. Y.; Li, J.; Feng, B. N. Chin. J. Org. Chem. 2016, 36, 2142. (in Chinese)
[23]
(王文龙, 骆欢, 高雅, 高立信, 盛丽, 周宇波, 李佳, 李静雅, 冯柏年, 有机化学, 2016, 36, 2142.)
[24]
Pac, A.; As, A.; Fal, A.; Mb, B.; Mfe, C. J. Mol. Struct. 2019, 1179, 11.
[25]
Chen, Y. N.; LaMarche, M. J.; Chan, H. M.; Fekkes, P.; Garcia, F. J.; Acker, M. G.; Antonakos, B.; Chen, C. H.; Chen, Z.; Cooke, V. G.; Dobson, J. R.; Deng, Z.; Fei, F.; Firestone, B.; Fodor, M.; Fridrich, C.; Gao, H.; Grunenfelder, D.; Hao, H. X.; Jacob, J.; Ho, S.; Hsiao, K.; Kang, Z. B.; Karki, R.; Kato, M.; Larrow, J.; LaBonte, L. R.; Lenoir, F.; Liu, G.; Liu, S.; Majumdar, D.; Meyer, M. J.; Palermo, M.; Perez, L.; Pu, M.; Price, E.; Quinn, C.; Shakya, S.; Shultz, M. D.; Slisz, J.; Venkatesan, K.; Wang, P.; Warmuth, M.; Williams, S.; Yang, G.; Yuan, J.; Zhang, J. H.; Zhu, P.; Ramsey, T.; Keen, N. J.; Sellers, W. R.; Stams, T.; Fortin, P. D. Nature 2016, 535, 148.
[26]
Welte, S.; Baringhaus, K. H.; Schmider, W.; Müller, G.; Petry, S.; Tennagels, N. Anal. Biochem. 2005, 338, 32.
[27]
Krishnan, N.; Koveal, D.; Miller, D. H.; Xue, B.; Akshinthala, S. D.; Kragelj, J.; Jensen, M. R.; Gauss, C. M.; Page, R.; Blackledge, M.; Muthuswamy, S. K.; Peti, W.; Tonks, N. K. Nat. Chem. Biol. 2014, 10, 558.
[28]
Zhang, W.; Hong, D.; Zhou, Y.; Zhang, Y.; Shen, Q.; Li, J. Y.; Hu, L. H.; Li, J. Biochim. Biophys. Acta 2006, 1760, 1505.
[29]
McGovern, S. L.; Helfand, B. T.; Feng, B.; Shoichet, B. K. J. Med. Chem. 2003, 46, 4265.
[30]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013.
[31]
Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. J. Comput. Chem. 2009, 30, 2785.
[32]
Yang, J.; Cheng, Z. L.; Niu, T. Q.; Liang, X. S.; Zhao, Z. Z. J.; Zhou, G. W. J. Biol. Chem. 2000, 275, 4066.
[33]
Zhang, B.; Wang, K. B.; Wang, W.; Wang, X.; Liu, F.; Zhu, J. P.; Shi, J.; Li, L. Y.; Han, H.; Xu, K.; Qiao, H. Y.; Zhang, X.; Jiao, R. H.; Houk, K. N.; Liang, Y.; Tan, R. X.; Ge, H. M. Nature 2019, 568, 122.
[34]
Daina, A.; Michielin, O.; Zoete, V. Sci. Rep. 2017, 7, 1.
[35]
Vachala, S. D.; Bhargavi, B. J. Chem. Pharm. Res. 2014, 6, 377.
[36]
Guan, P.; Wan, Y. C.; Hou, X. B.; Wang, L; Xu, W. F.; Tang, W. P.; Fang, H. Bioorg. Med. Chem. 2014, 22, 5766.
[37]
Jakovljević, K.; Matić, I. Z.; Stanojković, T.; Krivokuća, A.; Marković, V.; Joksović, M. D.; Mihailović, N.; Nićiforović, M.; Joksović, L. Bioorg. Med. Chem. Lett. 2017, 27, 3709.
文章导航

/