以芳基碘为碘化试剂的苯酚衍生物的位点选择性C—H键碘化反应
收稿日期: 2021-06-06
修回日期: 2021-06-07
网络出版日期: 2021-06-07
基金资助
国家自然科学基金(22022111); 国家自然科学基金(22071248); 福建省自然科学基金(2020J02008); 福建省自然科学基金(2020J01108); 中国科学院青年创新促进会(2020306)
Site-Selective C—H Iodination of Phenol Derivatives Using Aryl Iodide as Iodinating Reagent
Received date: 2021-06-06
Revised date: 2021-06-07
Online published: 2021-06-07
Supported by
National Natural Science Foundation of China(22022111); National Natural Science Foundation of China(22071248); Natural Science Foundation of Fujian Province(2020J02008); Natural Science Foundation of Fujian Province(2020J01108); Youth Innovation Promotion Association of the Chinese Academy of Sciences(2020306)
张涛 , 李尚达 , 周春林 , 王新超 , 张孟 , 高泽众 , 李纲 . 以芳基碘为碘化试剂的苯酚衍生物的位点选择性C—H键碘化反应[J]. 有机化学, 2021 , 41(9) : 3511 -3520 . DOI: 10.6023/cjoc202106011
Site-selective C—H iodination of electron-rich phenols is a challenging reaction. A Pd(II)-catalyzed C—H iodination of free 2-aryl phenols and 2-phenoxyacetic acids using 4-iodo-3-nitroanisole as the mild iodinating reagent was reported. Excellent site-selectivity and good functional group tolerance were obtained with a range of electron rich phenol derivatives. These results suggest that C—H iodination via formal metathesis is a potentially useful method for C—H iodination of challenging substrates.
Key words: C—H iodination; formal metathesis; site-selectivity; phenol; aryl iodide; palladium catalysis
[1] | (a) Bringmann, G.; Gulder, T.; Gulder, T. A.; Breuning, M. Chem. Rev. 2011, 111, 563. |
[1] | (b) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359. |
[1] | (c) Qin, L.; Ren, L.; Wan, S.; Liu, G.; Luo, X.; Liu, Z.; Li, F.; Yu, Y.; Liu, J.; Wei, Y. J. Med. Chem. 2017, 60, 3606. |
[2] | Reed, M. A.; Chang, M. T.; Snieckus, V. Org. Lett. 2004, 6, 2297. |
[3] | (a) Liao, G.; Shi, B. Acta Chim. Sinica 2015, 73, 1283. (in Chinese). |
[3] | ( 廖港, 史炳锋, 化学学报, 2015, 73, 1283.) |
[3] | (b) Petrone, D. A.; Ye, J.; Lautens, M. Chem. Rev. 2016, 116, 8003. |
[3] | (c) Luo, J.; Xu, X.; Zhao, Y.; Liang, H. Chin. J. Org. Chem. 2017, 37, 2873. (in Chinese). |
[3] | ( 骆钧飞, 徐星, 赵延超, 梁洪泽, 有机化学, 2017, 37, 2873.) |
[3] | (d) Das, R.; Kapur, M. Asian J. Org. Chem. 2018, 7, 1524. |
[4] | (a) Giri, R.; Chen, X.; Yu, J. Q. Angew. Chem., nt. Ed. 2005, 44, 2112. |
[4] | (b) Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z. J. Am. Chem. Soc. 2006, 128, 7416. |
[4] | (c) Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. Org. Lett. 2006, 8, 2523. |
[4] | (d) Mei, T.-S.; Giri, R.; Maugel, N.; Yu, J.-Q. Angew. Chem., nt. Ed. 2008, 47, 5215. |
[4] | (e) Schröder, N.; Wencel-Delord, J.; Glorius, F. J. Am. Chem. Soc. 2012, 134, 8298. |
[4] | (f) Wang, X.-C.; Hu, Y.; Bonacorsi, S.; Hong, Y.; Burrell, R.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 10326. |
[4] | (g) Urones, B.; Martínez, Á. M.; Rodríguez, N.; Arrayás, R. G.; Carretero, J. C. Chem. Commun. 2013, 49, 11044. |
[4] | (h) Chu, L.; Xiao, K.-J.; Yu, J.-Q. Science 2014, 346, 451. |
[4] | (i) Gao, D.-W.; Gu, Q.; You, S.-L. ACS Catal. 2014, 4, 2741. |
[4] | (j) Lu, C.; Zhang, S.-Y.; He, G.; Nack, W. A.; Chen, G. Tetrahedron 2014, 70, 4197. |
[4] | (k) Aihara, Y.; Chatani, N. ACS Catal. 2016, 6, 4323. |
[4] | (l) Zhan, B.-B.; Liu, Y.-H.; Hu, F.; Shi, B.-F. Chem. Commun. 2016, 52, 4934. |
[4] | (i) Fan, X.-M.; Guo, Y.; Li, Y.-D.; Yu, K.-K.; Liu, H.-W.; Liao, D.-H.; Ji, Y.-F. Asian J. Org. Chem. 2016, 5, 499. |
[4] | (m) Li, J.; Cong, W.; Gao, Z.; Zhang, J.; Yang, H.; Jiang, G. Org. Biomol. Chem. 2018, 16, 3479. |
[4] | (n) Schreib, B. S.; Carreira, E. M. J. Am. Chem. Soc. 2019, 141, 8758. |
[5] | Sun, X.; Yao, X.; Zhang, C.; Rao, Y. Chem. Commun. 2015, 51, 10014. |
[6] | (a) Youn, S. W.; Cho, C. G. Org. Biomol. Chem. 2021, DOI: 10. 1039/d1ob00506e. |
[6] | (b) Xu, X.; Luo, J. ChemSusChem 2019, 12, 4601. |
[7] | (a) Bedford, R. B.; Engelhart, J. U.; Haddow, M. F.; Mitchell, C. J.; Webster, R. L. Dalton Trans. 2010, 39, 10464. |
[7] | (b) John, A.; Nicholas, K. M. J. Org. Chem. 2012, 77, 5600. |
[7] | (c) Sun, X.; Sun, Y.; Zhang, C.; Rao, Y. Chem. Commun. 2014, 50, 1262. |
[8] | (a) Bhawal, B. N.; Morandi, B. Angew. Chem., nt. Ed. 2019, 58, 10074. |
[8] | (b) Yu, B.; Zou, S.; Liu, H.; Huang, H. J. Am. Chem. Soc. 2020, 142, 18341. |
[8] | (c) Yu, B.; Zou, S.; Huang, H. J. Org. Chem. 2021, 86, 7849. |
[8] | (d) Rochette, E.; Desrosiers, V.; Soltani, Y.; Fontaine, F. G. J. Am. Chem. Soc. 2019, 141, 12305. |
[8] | (e) Baba, K.; Tobisu, M.; Chatani, N. Angew. Chem., nt. Ed. 2013, 52, 11892. |
[8] | (f) Shao, Y.; Zhang, F.; Zhang, J.; Zhou, X. Angew. Chem., nt. Ed. 2016, 55, 11485. |
[8] | (g) Fan, C.; Lv, X.-Y.; Xiao, L.-J.; Xie, J.-H.; Zhou, Q.-L. J. Am. Chem. Soc. 2019, 141, 2889. |
[9] | Li, S.; Zhang, C.; Fu, L.; Wang, H.; Cai, L.; Chen, X.; Wang, X.; Li, G. CCS Chem. 2021, DOI: 10.31635/ccschem.021.202101156. |
[10] | (a) Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Angew. Chem., nt. Ed. 1997, 36, 1740. |
[10] | (b) Xiao, B.; Gong, T.-J.; Liu, Z.-J.; Liu, J.-H.; Luo, D.-F.; Xu, J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 9250. |
[10] | (c) Luo, S.; Luo, F.-X.; Zhang, X.-S.; Shi, Z.-J. Angew. Chem., nt. Ed. 2013, 52, 10598. |
[10] | (d) Inamoto, K.; Kadokawa, J.; Kondo, Y. Org. Lett. 2013, 15, 3962. |
[10] | (e) Zhang, C.; Ji, J.; Sun, P. J. Org. Chem. 2014, 79, 3200. |
[10] | (f) Duan, S.; Xu, Y.; Zhang, X.; Fan, X. Chem. Commun. 2016, 52, 10529. |
[10] | (g) Fu, L.; Li, S.; Cai, Z.; Ding, Y.; Guo, X.-Q.; Zhou, L.-P.; Yuan, D.; Sun, Q.-F.; Li, G. Nat. Catal. 2018, 1, 469. |
[10] | (h) Kumar, D. R.; Gopi Krishna Reddy, A.; Satyanarayana, G. Eur. J. Org. Chem. 2019, 2019, 2472. |
[11] | (a) Wei, Y.; Yoshikai, N. Org. Lett. 2011, 13, 5504. |
[11] | (b) Schmidt, B.; Riemer, M. J. Heterocycl. Chem. 2017, 54, 1287. |
[12] | (a) Sun, W.-W.; Cao, P.; Mei, R.-Q.; Li, Y.; Ma, Y.-L.; Wu, B. Org. Lett. 2014, 16, 480. |
[12] | (b) Tong, H.-R.; Zheng, W.; Lv, X.; He, G.; Liu, P.; Chen, G. ACS Catal. 2020, 10, 114. |
[12] | (c) Zhou, T.; Jiang, M.-X.; Yang, X.; Yue, Q.; Han, Y.-Q.; Ding, Y.; Shi, B.-F. Chin. J. Chem. 2020, 38, 242. |
[13] | Wang, P.; Verma, P.; Xia, G.; Shi, J.; Qiao, J. X.; Tao, S.; Cheng, P. T. W.; Poss, M. A.; Farmer, M. E.; Yeung, K.-S.; Yu, J.-Q. Nature 2017, 551, 489. |
[14] | (a) Whitfield, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 15142. |
[14] | (b) Xu, L.-M.; Li, B.-J.; Yang, Z.; Shi, Z.-J. Chem. Soc. Rev. 2010, 39, 712. |
[14] | (c) Hickman, A. J.; Sanford, M. S. Nature 2012, 484, 177. |
[14] | (d) Powers, D. C.; Ritter, T. Acc. Chem. Res. 2012, 45, 840. |
[15] | (a) Xiao, Y.; Xu, Y.; Cheon, H.; Chae, J. J. Org. Chem. 2013, 78, 5804. |
[15] | (b) He, X.; Yu, Z.; Jiang, S.; Zhang, P.; Shang, Z.; Lou, Y.; Wu, J. Bioorg. Med. Chem. 2015, 25, 5601. |
[15] | (c) Okaecwe, T.; Swanepoel, A.; Petzer, A.; Bergh, J.; Petzer, J. Bioorg. Med. Chem. 2012, 20, 4336. |
[16] | Dudnik, A. S.; Chernyak, N.; Huang, C.; Gevorgyan, V. Angew. Chem., n. Ed. 2010, 49, 8729. |
/
〈 |
|
〉 |