综述与进展

一氧化碳参与β-内酰胺化合物合成的研究进展

  • 王鹏 ,
  • 杨妲 ,
  • 刘欢
展开
  • a 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032
    b 中国石油大学(华东)理学院 化学系 青岛 266580

收稿日期: 2021-04-30

  修回日期: 2021-05-25

  网络出版日期: 2021-06-08

基金资助

国家自然科学青年基金(21901250); 中国博士后科学面上基金(2019M651625)

Recent Advances on the Synthesis of β-Lactams by Involving Carbon Monoxide

  • Peng Wang ,
  • Da Yang ,
  • Huan Liu
Expand
  • a State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
    b Department of Chemistry, College of Science, China University of Petroleum (East China), Qingdao 266580
* Corresponding author. E-mail:

Received date: 2021-04-30

  Revised date: 2021-05-25

  Online published: 2021-06-08

Supported by

National Natural Science Foundation of China: Youth Project(21901250); General Programs of China Postdoctoral Science Foundation(2019M651625)

摘要

β-内酰胺类化合物是具有高生物活性及高应用价值的抗生素, 如何高效高选择性地设计、合成该类化合物一直是有机化学研究的热点问题. 由于其环状结构中具有羰基结构, 利用一氧化碳(CO)作为羰源与底物分子发生羰基化反应也发展成为合成β-内酰胺的有效方法. 通过该方法可以一步高效合成结构多样性且新颖的β-内酰胺化合物. 综述了近年来通过不同底物分子与CO发生羰基化反应构建β-内酰胺的研究进展, 并且对该方法存在的问题以及未来发展方向进行了展望.

本文引用格式

王鹏 , 杨妲 , 刘欢 . 一氧化碳参与β-内酰胺化合物合成的研究进展[J]. 有机化学, 2021 , 41(9) : 3448 -3458 . DOI: 10.6023/cjoc202104060

Abstract

β-Lactam compounds are antibiotics with high biological activity and high application value. Design and synthesis of β-lactams with high efficiency and high selectivity have always been a hot issue in organic chemistry. Because of the carbonyl group in the ring structure, the carbonylation reaction between substrate and carbon monoxide (CO) has also developed into a new method for synthesis of β-lactams, which can be used to synthesize novel and diverse structures in one step. In this paper, the carbonylation of different substrates with CO to synthesize β-lactams in recent years is reviewed, and the existing problems and future development of this strategy are prospected.

参考文献

[1]
Fleming, A. Br. J. Exp. Pathol. 1929, 10, 226.
[2]
Brandi, A.; Cicchi, S.; Cordero, F. M. Chem. Rev. 2008, 108, 3988.
[3]
Cossío, F. P.; Arrieta, A.; Sierra, M. A. Acc. Chem. Res. 2008, 41, 925.
[4]
Liang, Y.; Jiao, L.; Zhang, S.; Yu, Z. X.; Xu, J. J. Am. Chem. Soc. 2009, 131, 1542.
[5]
Liu, M. S.; Fu, N. Y. Chin. J. Org. Chem. 2010, 30, 499. (in Chinese).
[5]
( 刘明舜, 傅南雁, 有机化学, 2010, 30, 499.)
[6]
Maree, C. L.; Daum, R. S.; Boyle-Vavra, S.; Matayoshi, K.; Miller, L. G. Emerging Infect. Dis. 2007, 13, 236.
[7]
Ojima, I.; Delaloge, F. Chem. Soc. Rev. 1997, 26, 377.
[8]
Tuba, R. Org. Biomol. Chem. 2013, 11, 5976.
[9]
Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911.
[10]
Cheung, W. H.; Zheng, S. L.; Yu, W. Y.; Zhou, G. C.; Che, C. M. Org. Lett. 2003, 5, 2535.
[11]
Choi, M. K. W.; Yu, W. Y.; Che, C. M. Org. Lett. 2005, 7, 1081.
[12]
Brandi, A.; Cicchi, S.; Cordero, F. M. Chem. Rev. 2008, 108, 3988.
[13]
Lo, M. M. C.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 4572.
[14]
Shintani, R.; Fu, G. C. Angew. Chem., Int. Ed. 2003, 42, 4082.
[15]
Saito, T.; Kikuchi, T.; Tanabe, H.; Yahiro, J.; Otani, T. Tetrahedron Lett. 2009, 50, 4969.
[16]
Gilman, H.; Speeter, M. J. Am. Chem. Soc. 1943, 65, 2255.
[17]
Benaglia, M.; Cinquini, M.; Cozzi, F. Eur. J. Org. Chem. 2000, 563.
[18]
Beller, M.; Wu, X. F. Transition Metal Catalyzed Carbonylation Reactions: Carbonylative Activation of C-X Bonds, Springer, Amsterdam, 2013.
[19]
Nienburg, H. J.; Elschnigg, G. Chem. Abstr. 1961, 55, 10323h.
[20]
Piens, N.; D'hooghe, M. Eur. J. Org. Chem. 2017, 40, 5943.
[21]
Mele, G. G. Curr. Org. Chem. 2006, 10, 1397.
[22]
Huang, C. Y. D.; Doyle, A. G. Chem. Rev. 2014, 114, 8153.
[23]
Alper, H.; Urso, F. J. Am. Chem. Soc. 1983, 105, 6737.
[24]
Alper, H.; Hamel, N. Tetrahedron Lett. 1987, 28, 3237.
[25]
Calet, S.; Urso, F.; Alper, H. J. Am. Chem. Soc. 1989, 11, 931.
[26]
Spears, G. W.; Nakanishi, K.; Ohfune, Y. Synlett 1991, 91.
[27]
Tanner, D.; Somfaib, P. Bioorg. Med. Chem. Lett. 1993, 3, 2415.
[28]
Tanner, D.; Somfaib, P. Tetrehedron 1988, 44, 619.
[29]
Piotti, M. E.; Alper, H. J. Am. Chem. Soc. 1989, 11, 931.
[30]
Davoli, P.; Forni, A.; Moretti, I.; Prati, F.; Torre, G. Tetrahedron 2001, 57, 1801.
[31]
Chamchaang, W.; Pinhas, A. R. J. Chem. Soc., Chem. Commun. 1998, 61, 710.
[32]
Mahadevan, V.; Getzler, Y. D. Y. L.; Coates, G. W. Angew. Chem., Int. Ed. 2002, 41, 2781.
[33]
Ardura, D.; Lopez, R.; Sordo, T. L. J. Org. Chem. 2006, 71, 7315.
[34]
Fontana, F.; Tron, G. C.; Barbero, N.; Ferrini, S.; Thomas, S. P.; Aggarwal, V. K. Chem. Commun. 2010, 46, 267.
[35]
Piens, N.; Hecke, K. V.; Vogt, D.; D'hooghe, M. Org. Biomol. Chem. 2017, 15, 4816.
[36]
Staudinger, H. Justus Liebigs Ann. Chem. 1907, 356, 51.
[37]
Tidwell, T. T. Ketenes, 2nd ed., John Wiley and Sons, Hoboken, NJ, 2006.
[38]
Torii, S.; Okumoto, H.; Sadakane, M.; Hai, A. K. M. A.; Tanaka, H. Tetrahedron Lett. 1993, 34, 6553.
[39]
Tanaka, H.; Hai, A. K. M. A.; Sadakane, M.; Okumoto, H.; Torii, S. J. Org. Chem. 1994, 59, 3040.
[40]
Troisi, L.; Vitis, L. D.; Granito, C.; Pilati, T.; Pindinelli, E. Tetrahedron 2004, 60, 6895.
[41]
Troisi, L.; Vitis, L. D.; Granito, C.; Epifani, E. Eur. J. Org. Chem. 2004, 1357.
[42]
Wartski, L. Bull. Soc. Chim. Fr. 1975, 1663.
[43]
Dhawan, R.; Dghaym, R. D.; Cyr, D. J. S.; Arndtsen, B. A. J. Org. Chem. 2006, 8, 3927.
[44]
Troisi, L.; Pindinelli, E.; Strusi, V.; Trinchera, P. Tetrahedron: Asymmetry 2009, 20, 368.
[45]
Clarke, J. F.; Gerard, G. W. A.; David, A. J. Org. Chem. 1974, 74, 417.
[46]
Vaccari, D.; Davoli, P.; Spaggiari, A.; Prati, F. Synlett 2008, 1317.
[47]
Zhang, Z. H.; Liu, Y. Y.; Ling, L.; Li, Y. X.; Dong, Y. A.; Gong, M. X.; Zhao, X. K.; Zhang, Y.; Wang, J. B. J. Am. Chem. Soc. 2011, 133, 4330.
[48]
Xie, P.; Qian, B.; Huang, H. M.; Xia, C. G. Tetrahedron Lett. 2012, 53, 1613.
[49]
Li, L. L.; Ding, D.; Song, J.; Han, Z. Y.; Gong, L. Z. Angew. Chem., Int. Ed. 2019, 58, 7647.
[50]
Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091.
[51]
Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley-Inter-science, New York, 1998.
[52]
Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577.
[53]
Zhang, Z. H.; Zhang, Y.; Wang J. B. ACS Catal. 2011, 1, 1621.
[54]
Wentrup, C.; Heilmayer, W.; Kollenz, G. Synthesis 1994, 1219.
[55]
Tidwell, T. T. Angew. Chem., Int. Ed. 2005, 44, 5778.
[56]
Tidwell, T. T. Eur. J. Org. Chem. 2006, 563.
[57]
Fördős, E.; Tuba, R.; Párkányi, L.; Kégl, T.; Ungváry, F. Eur. J. Org. Chem. 2009, 74, 1994.
[58]
Paul, N. D.; Chirila, A.; Lu, H. J.; Zhang, X. P.; Bruin, B. Chem.- Eur. J. 2013, 19, 12953.
[59]
Tang, Z.; Mandal, S.; Paul, N. D.; Lutz, M.; Li, P.; Vlugt, J. I.; Bruin, B. Org. Chem. Front. 2015, 2, 1561.
[60]
Pedroni, J.; Boghi, M.; Saget, T.; Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 9064.
[61]
McNally, A.; Haffemayer, B.; Collins, B. S. L. Gaunt, M. J. Science 2014, 510, 129.
[62]
Willcox, D.; Chappell, B. G. N.; Hogg, K. F.; Calleja, J.; Smalley, A. P.; Gaunt, M. J. Science 2016, 354, 851.
[63]
Dailler, D.; Rocaboy, R.; Baudoin, O. Angew. Chem., Int. Ed. 2017, 56, 7218.
[64]
Zhang, Q.; Chen, K.; Rao, W.; Zhang, Y.; Chen, F. J.; Shi, B. F. Angew. Chem., Int. Ed. 2013, 52, 13588.
[65]
Sun, W. W.; Cao, P.; Mei, R. Q.; Li, Y.; Ma, Y. L.; Wu, B. Org. Lett. 2014, 16, 480.
[66]
Zhang, S. J.; Sun, W. W.; Cao, P.; Dong, X. P.; Liu, J. K.; Wu, B. J. Org. Chem. 2016, 81, 956.
[67]
Zhang, Q.; Chen, K.; Shi, B. F. Synlett 2014, 25, 1941.
[68]
Cabrera-Pardo, J. R.; Trowbridge, A.; Nappi, M.; Ozaki, K.; Gaunt, M. J. Angew. Chem., Int. Ed. 2017, 56, 11958.
[69]
Hogg, K. F.; Trowbridge, A.; Perezand, A. A.; Gaunt, M. J. Chem. Sci. 2017, 8, 8189.
[70]
Mori, M.; Chiba, K.; Okita, M.; Ban, Y. J. Chem. Soc., Chem. Commun. 1979, 698.
[71]
Chiba, K.; Mori, M.; Ban, Y. Tetrahedron 1985, 41, 387.
[72]
Mori, M.; Chiba, K.; Okita, M.; Kayo, I.; Ban, Y. Tetrahedron 1985, 41, 375.
[73]
Matsuda, I.; Sakakibara, J.; Nagashima, H. Tetrahedron Lett. 1991, 32, 7431.
[74]
Zhou, Z. X.; Alper, H. J. Org. Chem. 1996, 61, 1256.
[75]
Ma, S. M.; Wu, B.; Jiang, X. F. J. Org. Chem. 2005, 70, 2588.
[76]
Aronica, L. A.; Caporusso, A. M.; Evangelisti, C.; Botavina, M.; Alberto, G.; Martra, G. J. Organomet. Chem. 2012, 700, 20.
[77]
Li, W.; Liu, C.; Zhang, H.; Ye, K. Y.; Zhang, G. H.; Zhang, W. Z.; Duan, Z. L.; You, S. L.; Lei, A. W. Angew. Chem., Int. Ed. 2014, 53, 2443.
[78]
Torres, G. M.; Macias, M. H.; Quesnel, J. S.; Williams, O. P.; Yempally, V.; Bengali, A. A.; Arndtsen, B. A. J. Org. Chem. 2016, 81, 12106.
文章导航

/