一氧化碳参与β-内酰胺化合物合成的研究进展
收稿日期: 2021-04-30
修回日期: 2021-05-25
网络出版日期: 2021-06-08
基金资助
国家自然科学青年基金(21901250); 中国博士后科学面上基金(2019M651625)
Recent Advances on the Synthesis of β-Lactams by Involving Carbon Monoxide
Received date: 2021-04-30
Revised date: 2021-05-25
Online published: 2021-06-08
Supported by
National Natural Science Foundation of China: Youth Project(21901250); General Programs of China Postdoctoral Science Foundation(2019M651625)
王鹏 , 杨妲 , 刘欢 . 一氧化碳参与β-内酰胺化合物合成的研究进展[J]. 有机化学, 2021 , 41(9) : 3448 -3458 . DOI: 10.6023/cjoc202104060
β-Lactam compounds are antibiotics with high biological activity and high application value. Design and synthesis of β-lactams with high efficiency and high selectivity have always been a hot issue in organic chemistry. Because of the carbonyl group in the ring structure, the carbonylation reaction between substrate and carbon monoxide (CO) has also developed into a new method for synthesis of β-lactams, which can be used to synthesize novel and diverse structures in one step. In this paper, the carbonylation of different substrates with CO to synthesize β-lactams in recent years is reviewed, and the existing problems and future development of this strategy are prospected.
Key words: β-lactams; carbon monoxide; carbonylation; aziridine; ketene
[1] | Fleming, A. Br. J. Exp. Pathol. 1929, 10, 226. |
[2] | Brandi, A.; Cicchi, S.; Cordero, F. M. Chem. Rev. 2008, 108, 3988. |
[3] | Cossío, F. P.; Arrieta, A.; Sierra, M. A. Acc. Chem. Res. 2008, 41, 925. |
[4] | Liang, Y.; Jiao, L.; Zhang, S.; Yu, Z. X.; Xu, J. J. Am. Chem. Soc. 2009, 131, 1542. |
[5] | Liu, M. S.; Fu, N. Y. Chin. J. Org. Chem. 2010, 30, 499. (in Chinese). |
[5] | ( 刘明舜, 傅南雁, 有机化学, 2010, 30, 499.) |
[6] | Maree, C. L.; Daum, R. S.; Boyle-Vavra, S.; Matayoshi, K.; Miller, L. G. Emerging Infect. Dis. 2007, 13, 236. |
[7] | Ojima, I.; Delaloge, F. Chem. Soc. Rev. 1997, 26, 377. |
[8] | Tuba, R. Org. Biomol. Chem. 2013, 11, 5976. |
[9] | Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911. |
[10] | Cheung, W. H.; Zheng, S. L.; Yu, W. Y.; Zhou, G. C.; Che, C. M. Org. Lett. 2003, 5, 2535. |
[11] | Choi, M. K. W.; Yu, W. Y.; Che, C. M. Org. Lett. 2005, 7, 1081. |
[12] | Brandi, A.; Cicchi, S.; Cordero, F. M. Chem. Rev. 2008, 108, 3988. |
[13] | Lo, M. M. C.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 4572. |
[14] | Shintani, R.; Fu, G. C. Angew. Chem., Int. Ed. 2003, 42, 4082. |
[15] | Saito, T.; Kikuchi, T.; Tanabe, H.; Yahiro, J.; Otani, T. Tetrahedron Lett. 2009, 50, 4969. |
[16] | Gilman, H.; Speeter, M. J. Am. Chem. Soc. 1943, 65, 2255. |
[17] | Benaglia, M.; Cinquini, M.; Cozzi, F. Eur. J. Org. Chem. 2000, 563. |
[18] | Beller, M.; Wu, X. F. Transition Metal Catalyzed Carbonylation Reactions: Carbonylative Activation of C-X Bonds, Springer, Amsterdam, 2013. |
[19] | Nienburg, H. J.; Elschnigg, G. Chem. Abstr. 1961, 55, 10323h. |
[20] | Piens, N.; D'hooghe, M. Eur. J. Org. Chem. 2017, 40, 5943. |
[21] | Mele, G. G. Curr. Org. Chem. 2006, 10, 1397. |
[22] | Huang, C. Y. D.; Doyle, A. G. Chem. Rev. 2014, 114, 8153. |
[23] | Alper, H.; Urso, F. J. Am. Chem. Soc. 1983, 105, 6737. |
[24] | Alper, H.; Hamel, N. Tetrahedron Lett. 1987, 28, 3237. |
[25] | Calet, S.; Urso, F.; Alper, H. J. Am. Chem. Soc. 1989, 11, 931. |
[26] | Spears, G. W.; Nakanishi, K.; Ohfune, Y. Synlett 1991, 91. |
[27] | Tanner, D.; Somfaib, P. Bioorg. Med. Chem. Lett. 1993, 3, 2415. |
[28] | Tanner, D.; Somfaib, P. Tetrehedron 1988, 44, 619. |
[29] | Piotti, M. E.; Alper, H. J. Am. Chem. Soc. 1989, 11, 931. |
[30] | Davoli, P.; Forni, A.; Moretti, I.; Prati, F.; Torre, G. Tetrahedron 2001, 57, 1801. |
[31] | Chamchaang, W.; Pinhas, A. R. J. Chem. Soc., Chem. Commun. 1998, 61, 710. |
[32] | Mahadevan, V.; Getzler, Y. D. Y. L.; Coates, G. W. Angew. Chem., Int. Ed. 2002, 41, 2781. |
[33] | Ardura, D.; Lopez, R.; Sordo, T. L. J. Org. Chem. 2006, 71, 7315. |
[34] | Fontana, F.; Tron, G. C.; Barbero, N.; Ferrini, S.; Thomas, S. P.; Aggarwal, V. K. Chem. Commun. 2010, 46, 267. |
[35] | Piens, N.; Hecke, K. V.; Vogt, D.; D'hooghe, M. Org. Biomol. Chem. 2017, 15, 4816. |
[36] | Staudinger, H. Justus Liebigs Ann. Chem. 1907, 356, 51. |
[37] | Tidwell, T. T. Ketenes, 2nd ed., John Wiley and Sons, Hoboken, NJ, 2006. |
[38] | Torii, S.; Okumoto, H.; Sadakane, M.; Hai, A. K. M. A.; Tanaka, H. Tetrahedron Lett. 1993, 34, 6553. |
[39] | Tanaka, H.; Hai, A. K. M. A.; Sadakane, M.; Okumoto, H.; Torii, S. J. Org. Chem. 1994, 59, 3040. |
[40] | Troisi, L.; Vitis, L. D.; Granito, C.; Pilati, T.; Pindinelli, E. Tetrahedron 2004, 60, 6895. |
[41] | Troisi, L.; Vitis, L. D.; Granito, C.; Epifani, E. Eur. J. Org. Chem. 2004, 1357. |
[42] | Wartski, L. Bull. Soc. Chim. Fr. 1975, 1663. |
[43] | Dhawan, R.; Dghaym, R. D.; Cyr, D. J. S.; Arndtsen, B. A. J. Org. Chem. 2006, 8, 3927. |
[44] | Troisi, L.; Pindinelli, E.; Strusi, V.; Trinchera, P. Tetrahedron: Asymmetry 2009, 20, 368. |
[45] | Clarke, J. F.; Gerard, G. W. A.; David, A. J. Org. Chem. 1974, 74, 417. |
[46] | Vaccari, D.; Davoli, P.; Spaggiari, A.; Prati, F. Synlett 2008, 1317. |
[47] | Zhang, Z. H.; Liu, Y. Y.; Ling, L.; Li, Y. X.; Dong, Y. A.; Gong, M. X.; Zhao, X. K.; Zhang, Y.; Wang, J. B. J. Am. Chem. Soc. 2011, 133, 4330. |
[48] | Xie, P.; Qian, B.; Huang, H. M.; Xia, C. G. Tetrahedron Lett. 2012, 53, 1613. |
[49] | Li, L. L.; Ding, D.; Song, J.; Han, Z. Y.; Gong, L. Z. Angew. Chem., Int. Ed. 2019, 58, 7647. |
[50] | Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091. |
[51] | Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley-Inter-science, New York, 1998. |
[52] | Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577. |
[53] | Zhang, Z. H.; Zhang, Y.; Wang J. B. ACS Catal. 2011, 1, 1621. |
[54] | Wentrup, C.; Heilmayer, W.; Kollenz, G. Synthesis 1994, 1219. |
[55] | Tidwell, T. T. Angew. Chem., Int. Ed. 2005, 44, 5778. |
[56] | Tidwell, T. T. Eur. J. Org. Chem. 2006, 563. |
[57] | Fördős, E.; Tuba, R.; Párkányi, L.; Kégl, T.; Ungváry, F. Eur. J. Org. Chem. 2009, 74, 1994. |
[58] | Paul, N. D.; Chirila, A.; Lu, H. J.; Zhang, X. P.; Bruin, B. Chem.- Eur. J. 2013, 19, 12953. |
[59] | Tang, Z.; Mandal, S.; Paul, N. D.; Lutz, M.; Li, P.; Vlugt, J. I.; Bruin, B. Org. Chem. Front. 2015, 2, 1561. |
[60] | Pedroni, J.; Boghi, M.; Saget, T.; Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 9064. |
[61] | McNally, A.; Haffemayer, B.; Collins, B. S. L. Gaunt, M. J. Science 2014, 510, 129. |
[62] | Willcox, D.; Chappell, B. G. N.; Hogg, K. F.; Calleja, J.; Smalley, A. P.; Gaunt, M. J. Science 2016, 354, 851. |
[63] | Dailler, D.; Rocaboy, R.; Baudoin, O. Angew. Chem., Int. Ed. 2017, 56, 7218. |
[64] | Zhang, Q.; Chen, K.; Rao, W.; Zhang, Y.; Chen, F. J.; Shi, B. F. Angew. Chem., Int. Ed. 2013, 52, 13588. |
[65] | Sun, W. W.; Cao, P.; Mei, R. Q.; Li, Y.; Ma, Y. L.; Wu, B. Org. Lett. 2014, 16, 480. |
[66] | Zhang, S. J.; Sun, W. W.; Cao, P.; Dong, X. P.; Liu, J. K.; Wu, B. J. Org. Chem. 2016, 81, 956. |
[67] | Zhang, Q.; Chen, K.; Shi, B. F. Synlett 2014, 25, 1941. |
[68] | Cabrera-Pardo, J. R.; Trowbridge, A.; Nappi, M.; Ozaki, K.; Gaunt, M. J. Angew. Chem., Int. Ed. 2017, 56, 11958. |
[69] | Hogg, K. F.; Trowbridge, A.; Perezand, A. A.; Gaunt, M. J. Chem. Sci. 2017, 8, 8189. |
[70] | Mori, M.; Chiba, K.; Okita, M.; Ban, Y. J. Chem. Soc., Chem. Commun. 1979, 698. |
[71] | Chiba, K.; Mori, M.; Ban, Y. Tetrahedron 1985, 41, 387. |
[72] | Mori, M.; Chiba, K.; Okita, M.; Kayo, I.; Ban, Y. Tetrahedron 1985, 41, 375. |
[73] | Matsuda, I.; Sakakibara, J.; Nagashima, H. Tetrahedron Lett. 1991, 32, 7431. |
[74] | Zhou, Z. X.; Alper, H. J. Org. Chem. 1996, 61, 1256. |
[75] | Ma, S. M.; Wu, B.; Jiang, X. F. J. Org. Chem. 2005, 70, 2588. |
[76] | Aronica, L. A.; Caporusso, A. M.; Evangelisti, C.; Botavina, M.; Alberto, G.; Martra, G. J. Organomet. Chem. 2012, 700, 20. |
[77] | Li, W.; Liu, C.; Zhang, H.; Ye, K. Y.; Zhang, G. H.; Zhang, W. Z.; Duan, Z. L.; You, S. L.; Lei, A. W. Angew. Chem., Int. Ed. 2014, 53, 2443. |
[78] | Torres, G. M.; Macias, M. H.; Quesnel, J. S.; Williams, O. P.; Yempally, V.; Bengali, A. A.; Arndtsen, B. A. J. Org. Chem. 2016, 81, 12106. |
/
〈 |
|
〉 |