由糖基供体和糖基配体直接合成芳基或杂芳基C-核苷的研究进展
收稿日期: 2021-04-16
修回日期: 2021-05-12
网络出版日期: 2021-06-17
基金资助
国家自然科学基金(21772105)
Synthesis of Aryl or Heteroaryl C-Nucleosides by Direct Coupling of a Carbohydrate Moiety with a Preformed Aglycon Unit
Received date: 2021-04-16
Revised date: 2021-05-12
Online published: 2021-06-17
Supported by
National Natural Science Foundation of China(21772105)
C-核苷与自然界广泛存在的N-核苷的结构高度类似, 不同之处是C-核苷中核糖与碱基是通过碳-碳键连接的. C-核苷也可以被细胞内与N-核苷相关的酶所识别和利用, 从而抑制酶促的核酸的合成或降解, 进而抑制病毒或者癌细胞的增殖, 用于治疗2019新型冠状肺炎的C-核苷药物remdesivir的临床应用引起人们对C-核苷合成的关注. 由糖基供体和糖基配体直接偶联能高效合成芳基或杂芳基C-核苷, 从核糖衍生物与有机金属试剂的反应、过渡金属催化的核糖衍生物与有机金属试剂的反应、酸催化的核糖衍生物的傅克反应三种主要合成策略总结了近年来合成芳基或杂芳基C-核苷的文献方法, 每个反应类型中又分别从半缩醛核糖、核糖内酯、卤代核糖和核糖烯等不同糖供体角度展开讨论, 并对反应中α或β构型产物的生成机理进行了详细说明.
李非凡 , 渠瑾 . 由糖基供体和糖基配体直接合成芳基或杂芳基C-核苷的研究进展[J]. 有机化学, 2021 , 41(10) : 3948 -3964 . DOI: 10.6023/cjoc202104032
C-Nucleosides have similar structure compared to native N-nucleosides, while the carbohydrate unit and the base in a C-nucleoside are connected through a carbon-carbon bond. Because they can also be recognized and utilized by enzymes associated with N-nucleosides in cells, C-nucleosides can inhibit enzyme-catalyzed synthesis or degradation of nucleic acids, thereby inhibiting the proliferation of viruses or cancer cells. C-Nucleoside synthesis has drawn much attention since the clinical application of the C-nucleoside drug remdesivir for the treatment of COVID-19. The direct coupling of a carbohydrate moiety with a preformed aglycon unit is an efficient synthetic approach to construct aryl or heteroaryl C-nucleoside. The synthetic methods of aryl or heteroaryl C-nucleosides in recent years are summarized from three main synthetic strategies: coupling of ribose derivatives with organometallic reagents, transition metal-catalyzed coupling of ribose derivatives with organometallic reagents, and acid-catalyzed Friedel-Crafts reaction of ribose derivatives. Each synthetic strategy is categorized in terms of sugar donor precursors, including hemiacetal riboses, ribonolactones, ribofuranosyl halides, glycal, and others. The mechanism of α or β product formation in these reactions are explained in detail as well.
Key words: C-nucleoside; antiviral drug; Heck reaction; Friedel-Crafts reaction
[1] | Štambaský, J.; Hocek, M.; Kočovský, P. Chem. Rev. 2009, 109, 6729. |
[2] | De Clercq, E. J. Med. Chem. 2016, 59, 2301. |
[3] | Townsend, L. B. Chemistry of Nucleosides and Nucleotides, Plenum Press, New York, 1994, pp. 421-535. |
[4] | (a) Arnez, J. G.; Steitz, T. A. Biochemistry 1994, 33, 7560. |
[4] | (b) Davis, D. R.; Veltri, C. A.; Nielsen, L. J. Biomol. Struct. Dyn. 1998, 15, 1121. |
[4] | (c) Harrington, K. M.; Nazarenko, I. A.; Dix, D. B.; Thompson, R. C.; Uhlenbeck, O. C. Biochemistry 1993, 32, 7617. |
[5] | Nishimura, H.; Mayama, M.; Komatsu, Y.; Shimaoka, N.; Tanaka, Y.; Kato, H. J. Antibiot. 1964, 17, 148. |
[6] | Koyama, G.; Maeda, K.; Umezawa, H.; Iitaka, Y. Terahedron Lett. 1966, 7, 597. |
[7] | Kusakabe, Y.; Nagatsu, J.; Shibuya, M.; Kawaguchi, O.; Hirose, C.; Shirato, S. J. Antibiot. 1972, 25, 44. |
[8] | Gutowski, G. E.; Sweeney, M. J.; DeLong, D. C.; Hamill, R. L.; Gerzon, K.; Dyke, R. W. Ann. N. Y. Acad. Sci. 1975, 255, 544. |
[9] | (a) Robins, R. K.; Srivastava, P. C.; Narayanan, V. L.; Plowman, J.; Paull, K. D. J. Med. Chem. 1982, 25, 107. |
[9] | (b) Cooney, D. A.; Jayaram, H. N.; Gebeyehu, G.; Betts, C. R.; Kelley, J. A.; Marquez, V. E.; Johns, D. G. Biochem. Pharmacol. 1982, 31, 2133. |
[9] | (c) Jayaram, H. N.; Cooney, D. A.; Glazer, R. I.; Dion, R. L.; Johns, D. G. Biochem. Pharmacol. 1982, 31, 2557. |
[9] | (d) Jayaram, H. N.; Dion, R. L.; Glazer, R. I.; Johns, D. G.; Robins, R. K.; Srivastava, P. C.; Cooney, D. A. Biochem. Pharmacol. 1982, 31, 2371. |
[9] | (e) Jayaram, H. N.; Smith, A. L.; Glazer, R. I.; Johns, D. G.; Cooney, D. A. Biochem. Pharmacol. 1982, 31, 3839. |
[10] | Li, G.; De Clercq, E. Nat. Rev. Drug Discovery 2020, 19, 149. |
[11] | Warren, T. K.; Jordan, R.; Lo, M. K.; Ray, A. S.; Mackman, R. L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H. C.; Larson, N.; Strickley, R.; Wells, J.; Stuthman, K. S.; Van Tongeren, S. A.; Garza, N. L.; Donnelly, G.; Shurtleff, A. C.; Retterer, C. J.; Gharaibeh, D.; Zamani, R.; Kenny, T.; Eaton, B. P.; Grimes, E.; Welch, L. S.; Gomba, L.; Wilhelmsen, C. L.; Nichols, D. K.; Nuss, J. E.; Nagle, E. R.; Kugelman, J. R.; Palacios, G.; Doerffler, E.; Neville, S.; Carra, E.; Clarke, M. O.; Zhang, L.; Lew, W.; Ross, B.; Wang, Q.; Chun, K.; Wolfe, L.; Babusis, D.; Park, Y.; Stray, K. M.; Trancheva, I.; Feng, J. Y.; Barauskas, O.; Xu, Y.; Wong, P.; Braun, M. R.; Flint, M.; McMullan, L. K.; Chen, S.-S.; Fearns, R.; Swaminathan, S.; Mayers, D. L.; Spiropoulou, C. F.; Lee, W. A.; Nichol, S. T.; Cihlar, T.; Bavari, S. Nature 2016, 531, 381. |
[12] | (a) Warren, T. K.; Wells, J.; Panchal, R. G.; Stuthman, K. S.; Garza, N. L.; Van Tongeren, S. A.; Dong, L.; Retterer, C. J.; Eaton, B. P.; Pegoraro, G.; Honnold, S.; Bantia, S.; Kotian, P.; Chen, X.; Taubenheim, B. R.; Welch, L. S.; Minning, D. M.; Babu, Y. S.; Sheridan, W. P.; Bavari, S. Nature 2014, 508, 402. |
[12] | (b) Taylor, R.; Kotian, P.; Warren, T.; Panchal, R.; Bavari, S.; Julander, J.; Dobo, S.; Rose, A.; El-Kattan, Y.; Taubenheim, B.; Babu, Y.; Sheridan, W. P. J. Infect. Public Heal. 2016, 9, 220. |
[13] | Julander, J. G.; Bantia, S.; Taubenheim, B. R.; Minning, D. M.; Kotian, P.; Morrey, J. D.; Smee, D. F.; Sheridan, W. P.; Babu, Y. S. Antimicrob. Agents Chemother. 2014, 58, 6607. |
[14] | Wang, G.; Wan, J.; Hu, Y.; Wu, X.; Prhavc, M.; Dyatkina, N.; Rajwanshi, V. K.; Smith, D. B.; Jekle, A.; Kinkade, A.; Symons, J. A.; Jin, Z.; Deval, J.; Zhang, Q.; Tam, Y.; Chanda, S.; Blatt, L.; Beigelman, L. J. Med. Chem. 2016, 59, 4611. |
[15] | Wu, Q.; Simons, C. Synthesis 2004, 1533. |
[16] | Adamo, M. F. A.; Pergoli, R. Curr. Org. Chem. 2008, 12, 1544. |
[17] | Brown, D. M.; Ogden, R. C. J. Chem. Soc., Perkin Trans. 1 1981, 723. |
[18] | Krohn, K.; Heins, H.; Wielckens, K. J. Med. Chem. 1992, 35, 511. |
[19] | Harusawa, S.; Matsuda, C.; Araki, L.; Kurihara, T. Synthesis 2006, 793. |
[20] | Solomon, M. S.; Hopkins, P. B. Tetrahedron Lett. 1991, 32, 3297. |
[21] | Spadafora, M.; Burger, A.; Benhida, R. Synlett 2008, 1225. |
[22] | Peyron, C.; Benhida, R. Synlett 2009, 472. |
[23] | Piccirilli, J. A.; Krauch, T.; Macpherson, L. J.; Benner, S. A. Helv. Chim. Acta 1991, 74, 397. |
[24] | Kim, T. W.; Kool, E. T. Org. Lett. 2004, 6, 3949. |
[25] | van Rijssel, E. R.; van Delft, P.; Lodder, G.; Overkleeft, H. S.; van der Marel, G. A.; Filippov, D. V.; Codée, J. D. C. Angew. Chem., Int. Ed. 2014, 53, 10381. |
[26] | van Rijssel, E. R.; van Delft, P.; van Marle, D. V.; Bijvoets, S. M.; Lodder, G.; Overkleeft, H. S.; van der Marel, G. A.; Filippov, D. V.; Codée, J. D. C. J. Org. Chem. 2015, 80, 4553. |
[27] | Larsen, C. H.; Ridgway, B. H.; Shaw, J. T.; Smith, D. M.; Woerpel, K. A. J. Am. Chem. Soc. 2005, 127, 10879. |
[28] | Štefko, M.; Slavětínská, L.; Klepetářová, B.; Hocek, M. J. Org. Chem. 2011, 76, 6619. |
[29] | Asbun, W.; Binkley, S. B. J. Org. Chem. 1968, 31, 140. |
[30] | Enders, D.; Hieronymi, A.; Ridder, A. Synlett 2005, 2391. |
[31] | Guianvarc'h, D.; Fourrey, J. L.; Huu Dau, M. T.; Guérineau, V.; Benhida, R. J. Org. Chem. 2002, 67, 3724. |
[32] | Cho, A.; Saunders, O. L.; Butler, T.; Zhang, L.; Xu, J.; Vela, J. E.; Feng, J. Y.; Ray, A. S.; Kim, C. U. Bioorg. Med. Chem. Lett. 2012, 22, 2705. |
[33] | Metobo, S. E.; Xu, J.; Saunders, O. L.; Butler, T.; Aktoudianakis, E.; Cho, A.; Kim, C. U. Tetrahedron Lett. 2012, 53, 484. |
[34] | Chaudhuri, N. C.; Kool, E. T. Tetrahedron Lett. 1995, 36, 1795. |
[35] | Shapiro, R.; Chambers, R. W. J. Am. Chem. Soc. 1961, 83, 3920. |
[36] | Schweitzer, B. A.; Kool, E. T. J. Org. Chem. 1994, 59, 7238. |
[37] | Hocek, M.; Pohl, R.; Klepetářová, B. Eur. J. Org. Chem. 2005, 2005, 4525. |
[38] | Joubert, N.; Urban, M.; Pohl, R.; Hocek, M. Synthesis 2008, 1918. |
[39] | Weinberger, M.; Wagenknecht, H. A. Synthesis 2012, 44, 648. |
[40] | Jiang, Y. L.; Stivers, J. T. Tetrahedron Lett. 2003, 44, 4051. |
[41] | Nicolas, L.; Angibaud, P.; Stansfield, I.; Meerpoel, L.; Reymond, S.; Cossy, J. Tetrahedron Lett. 2014, 55, 849. |
[42] | Beuck, C.; Singh, I.; Bhattacharya, A.; Hecker, W.; Parmar, V. S.; Seitz, O.; Weinhold, E. Angew. Chem., Int. Ed. 2003, 42, 3958. |
[43] | Ren, R. X.-F.; Chaudhuri, N. C.; Paris, P. L.; Rumney, S.; Kool, E. T. J. Am. Chem. Soc. 1996, 118, 7671. |
[44] | Hainke, S.; Singh, I.; Hemmings, J.; Seitz, O. J. Org. Chem. 2007, 72, 8811. |
[45] | Singh, I.; Seitz, O. Org. Lett. 2006, 8, 4319. |
[46] | Hacksell, U.; Daves, G. D. J. Org. Chem. 1983, 48, 2870. |
[47] | Cheng, J. C. Y.; Hacksell, U.; Daves, G. D. J. Org. Chem. 1986, 51, 3093. |
[48] | Zhang, H. C.; Daves, G. D. J. Org. Chem. 1992, 57, 4690. |
[49] | Raboisson, P.; Baurand, A.; Cazenave, J. P.; Gachet, C.; Schultz, D.; Spiess, B.; Bourguignon, J. J. J. Org. Chem. 2002, 67, 8063. |
[50] | Lefoix, M.; Mathis, G.; Kleinmann, T.; Truffert, J. C.; Asseline, U. J. Org. Chem. 2014, 79, 3221. |
[51] | Joubert, N.; Pohl, R.; Klepetářová, B.; Hocek, M. J. Org. Chem. 2007, 72, 6797. |
[52] | Chapuis, H.; Kubelka, T.; Joubert, N.; Pohl, R.; Hocek, M. Eur. J. Org. Chem. 2012, 1759. |
[53] | Temburnikar, K.; Brace, K.; Seley-Radtke, K. L. J. Org. Chem. 2013, 78, 7305. |
[54] | Gong, H.; Gagné, M. R. J. Am. Chem. Soc. 2008, 130, 12177. |
[55] | Nicolas, L.; Izquierdo, E.; Angibaud, P.; Stansfield, I.; Meerpoel, L.; Reymond, S.; Cossy, J. J. Org. Chem. 2013, 78, 11807. |
[56] | Adak, L.; Kawamura, S.; Toma, G.; Takenaka, T.; Isozaki, K.; Takaya, H.; Orita, A.; Li, H. C.; Shing, T. K. M.; Nakamura, M. J. Am. Chem. Soc. 2017, 139, 10693. |
[57] | Wang, Q.; An, S.; Deng, Z.; Zhu, W.; Huang, Z.; He, G.; Chen, G. Nat. Catal. 2019, 2, 793. |
[58] | Ma, Y.; Liu, S.; Xi, Y.; Li, H.; Yang, K.; Cheng, Z.; Wang, W.; Zhang, Y. Chem. Commun. 2019, 55, 14657. |
[59] | Mukaiyama, T.; Matsubara, K.; Hora, M. Synthesis 1994, 1368. |
[60] | Shirakawa, S.; Kobayashi, S. Org. Lett. 2007, 9, 311. |
[61] | Sokolova, T. N.; Yartseva, I. V.; Preobrazhenskaya, M. N. Carbohydr. Res. 1981, 93, 19. |
[62] | Hainke, S.; Arndt, S.; Seitz, O. Org. Biomol. Chem. 2005, 3, 4233. |
[63] | Bárta, J.; Pohl, R.; Klepetářová, B.; Ernsting, N. P.; Hocek, M. J. Org. Chem. 2008, 73, 3798. |
[64] | Macdonald, S. J. F.; Huizinga, W. B.; McKenzie, T. C. J. Org. Chem. 1988, 53, 3371. |
[65] | Yokoyama, M.; Nomura, M.; Togo, H.; Seki, H. J. Chem. Soc., erkin Trans. 1 1996, 2145. |
[66] | Girgis, N. S.; Michael, M. A.; Smee, D. F.; Alaghamandan, H. A.; Robins, R. K.; Cottam, H. B. J. Med. Chem. 1990, 33, 2750. |
[67] | Liu, M. C.; Luo, M. Z.; Mozdziesz, D. E.; Sartorelli, A. C. Nucleosides Nucleotides Nucleic Acids 2005, 24, 45. |
[68] | Shin, D.; Sinkeldam, R. W.; Tor, Y. J. Am. Chem. Soc. 2011, 133, 14912. |
[69] | Spadafora, M.; Mehiri, M.; Burger, A.; Benhida, R. Tetrahedron Lett. 2008, 49, 3967. |
[70] | Marzag, H.; Zerhouni, M.; Tachallait, H.; Demange, L.; Robert, G.; Bougrin, K.; Auberger, P.; Benhida, R. Bioorg. Med. Chem. 2018, 28, 1931. |
[71] | Tachallait, H.; Filho, M. S.; Marzag, H.; Bougrin, K.; Demange, L.; Martin, A. R.; Benhida, R. New J. Chem. 2019, 43, 5551. |
[72] | Hungerford, N. L.; Armitt, D. J.; Banwell, M. G. Synthesis 2003, 1837. |
/
〈 |
|
〉 |