研究论文

碱催化α-氰基-β-甲基烯基(杂)芳基酮苯增环反应合成多取代苯

  • 安逸 ,
  • 张放 ,
  • 蔡志华 ,
  • 杜广芬
展开
  • 石河子大学化工学院 新疆兵团化工绿色过程重点实验室 新疆石河子 832000

收稿日期: 2021-04-27

  修回日期: 2021-06-07

  网络出版日期: 2021-06-29

基金资助

国家自然科学基金(21662029); 兵团优秀青年教师(2017CB001); 兵团优秀青年教师(CZ027203); 石河子大学国际合作(GJHZ201801)

Direct Assembly of Polysubstituted Benzenes via Base-Catalyzed Benzannulation Reaction of α-Cyano-β-methylalkenyl-(hetero)aryl Ketones

  • Yi An ,
  • Fang Zhang ,
  • Zhihua Cai ,
  • Guangfen Du
Expand
  • Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832000
* Corresponding author. E-mail:

Received date: 2021-04-27

  Revised date: 2021-06-07

  Online published: 2021-06-29

Supported by

National Natural Science Foundation of China(21662029); Excellent Young Teachers Plan of Bingtuan(2017CB001); Excellent Young Teachers Plan of Bingtuan(CZ027203); International Cooperation Project of Shihezi University(GJHZ201801)

摘要

发展了一种非金属催化下高效构筑多取代苯的新方法. 以10 mol%的Cs2CO3为催化剂, 一系列α-氰基-β-甲基烯基(杂)芳基酮可在极其温和的反应条件下与丁炔二酸酯发生[4+2]环加成/脱水芳构化苯增环反应, 以62%~94%的收率生成1,2-二酯基-3-(杂)芳基-4-氰基苯衍生物.

本文引用格式

安逸 , 张放 , 蔡志华 , 杜广芬 . 碱催化α-氰基-β-甲基烯基(杂)芳基酮苯增环反应合成多取代苯[J]. 有机化学, 2021 , 41(9) : 3625 -3632 . DOI: 10.6023/cjoc202104056

Abstract

A mild and transition-metal free method for rapid construction of benzene frameworks has been developed. Under the catalysis of 10 mol% Cs2CO3, a variety of α-cyano-methylalkenyl(hetero)aryl ketones undergo [4+2] annulation with different dialkyl butynedioates efficiently to produce 1,2-diesteryl-3-(hetero)aryl-4-cyanobenzene derivatives in 62%~94% yields.

参考文献

[1]
(a) Lvan Otterlo, W. A. L.; de Koning, C. B. Chem. Rev. 2009, 109, 3743.
[1]
(b) Fuhr, L.; Rousseau, M.; Plauth, A.; Schroeder, F. C.; Sauer, S. J. Nat. Prod. 2015, 78, 1160.
[1]
(c) Boland, S.; Bourin, A.; Alen, J.; Geraets, J.; Schroeders, P.; Castermans, K.; Kindt, N.; Boumans, N.; Panitti, L.; Fransen, S.; Vanormel ingen, J.; Stassen, J. M.; Leysen, D.; Defert, O. J. Med. Bioorg. Chem. Lett. 2015, 58, 4309.
[1]
(d) Shirota, Y. J. Mater. Chem. 2005, 15, 75.
[2]
(a) Kirkham, J. D.; Butlin, R. J.; Harrity, J. P. A. Angew. Chem., Int. Ed. 2012, 51, 6402.
[2]
(b) Fillion, E.; Dumas, A. M. J. Org. Chem. 2008, 73, 2920.
[3]
(a) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731.
[3]
(b) Ciana, C. L.; Phipps, R. J.; Brandt, J. R.; Meyer, F. M.; Gaunt, M. J. Angew. Chem., Int. Ed. 2011, 50, 458.
[3]
(c) Gustafson, J. L.; Lim, D.; Barrett, K. T.; Miller, S. J. Angew. Chem., Int. Ed. 2011, 50, 5125.
[3]
(d) Zhao, F.; Zhang, Y.-F.; Wen, J.; Yu, D.-G.; Wei, J.-B.; Xi, Z.; Shi, Z.-J. Org. Lett. 2013, 15, 3230.
[4]
(a) Roglans, A.; Pla-Quintana, A.; SolÃ, M. Chem. Rev. 2021, 121, 1894.
[4]
(b) Chien, C.-W.; Teng Gary, Y.-H.; Honda, T.; Ojima, I. J. Org. Chem. 2018, 83, 11623.
[4]
(c) Okamoto, S.; Yamada, T.; Tanabe, Y. K.; Sakai, M. Organometallics 2018, 37, 4431.
[4]
(d) More, A. A.; Ramana, C. V. J. Org. Chem. 2016, 81, 3400.
[4]
(e) García-Lacuna, J.; Domínguez, G.; Blanco-Urgoiti, J.; Perez-Castells, J. Org. Lett. 2018, 20, 5219.
[4]
(f) Méndez-Gálvez, C.; Böhme, M.; Leino, R.; SavelaEur, R. J. Org. Chem. 2020, 11, 1708.
[5]
(a) Hein, S. J.; Lehnherr, D.; Arslan, H.; Uribe, F. J.; Dichtel, W. R. Acc. Chem. Res. 2017, 50, 2776.
[5]
(b) Poudel, T. N.; Tamargo, R. J. I.; Cai, H.; Lee, Y. R. Asian J. Org. Chem. 2018, 7, 985.
[5]
(c) Takikawa, H.; Nishii, A.; Takiguchi, H.; Yagishita, H.; Tanaka, M.; Hirano, K.; Uchiyama, M.; Ohmori, K.; Suzuki, K. Angew. Chem., Int. Ed. 2020, 59, 12440.
[5]
(d) Song, C. L.; Dong, X.; Wang, Z. J.; Liu, K.; Chiang, C. W.; Lei, A. W. Angew. Chem., Int. Ed. 2019, 58, 12206.
[6]
(a) Jia, Q. F.; Lin, Y. Q.; Li, Y. H. Chin. J. Org. Chem. 2020, 40, 1502. (in Chinese).
[6]
( 贾乾发, 李娅琼, 林银河, 有机化学, 2020, 40, 1502.)
[6]
(b) Wang, D.; Lin, J. H.; Zhu, Y. N.; Huang, Y. Adv. Synth. Catal. 2021, 363, 1873.
[6]
(c) Wu, J. C.; Mou, C.-L.; Chi, Y. G. Chin. J. Chem. 2018, 36, 333.
[6]
(d) Chang, M. J.; Huang, Y. Chem. Asian J. 2019, 14, 2588.
[6]
(e) Shu, W. M.; Zheng, K. L.; Ma, J. R.; Wu, A. X. Org. Lett. 2015, 17, 5216.
[6]
(f) Jia, F. C.; Xu, C.; Zhou, Z. W.; Cai, Q.; Wu, Y. D.; Wu, A. X. Org. Lett. 2016, 18, 5232.
[6]
(g) Zhou, Q.-F.; Xin, B.-T.; Lu, T.; Xue, S. Chin. J. Org. Chem. 2009, 29, 1462. (in Chinese).
[6]
( 周庆发, 辛波涛, 陆涛, 薛松, 有机化学, 2009, 29, 1462.)
[7]
(a) Zhang, C. L.; Ye, S. Org. Lett. 2016, 18, 6408.
[7]
(b) Jia, Q.; Wang, J. Org. Lett. 2016, 18, 2212.
[8]
Zhang, C. L.; Gao, Z. H.; Liang, Z. Q.; Ye, S. Adv. Synth. Catal. 2016, 358, 2862.
[9]
Zhang, C. L.; Zhang, Z.-F.; Xia, Z. H.; Han, Y. F.; Ye, S. J. Org. Chem. 2018, 83, 12507.
[10]
Zhu, C. Z.; Wei, Y.; Shi, M. Adv. Synth. Catal. 2018, 360, 808.
[11]
(a) Wang, W. H.; Wan, H. W.; Du, G. F.; Dai, B.; He, L. Org. Lett. 2019, 21, 3496.
[11]
(b) Pian, J. X.; He, L.; Du, G. F.; Guo, H.; Dai, B. J. Org. Chem. 2014, 79, 5820.
[11]
(c) Xie, P.; Yang, S. S.; Guo, Y. Y.; Cai; Z. H.; Dai; B.; He, L. J. Org. Chem. 2020, 85, 8872.
[11]
(d) Li, Z. J.; Wang, W. H.; Jian, H.; Li, W.J.; Dai; B.; He, L. Chin. Chem. Lett. 2019, 30, 386.
[11]
(e) Feng, Z. N.; Luo, J. Y.; Zhang, Y.; Du, G.-F.; He, L. Org. Biomol. Chem. 2019, 17, 4700.
[12]
Wang, Q.; An, Y.; Du, G. F.; Cai, Z. H.; Dai, B.; He, L. J. Org. Chem. 2020, 85, 14210.
[13]
For more X-ray crystal structure information of 3a CCDC:2077708) see Supporting Information. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
文章导航

/