研究论文

(E)-N-(4-苯乙烯基)丙烯酰胺类DNA拓扑异构酶IIα抑制剂的合成及抗肿瘤活性研究

  • 尹丽君 ,
  • 李超群 ,
  • 吴晓霞 ,
  • 徐广森 ,
  • 李志颖 ,
  • 沈月毛
展开
  • 山东大学药学院 天然产物化学教育部重点实验室 济南 250012

收稿日期: 2021-05-06

  修回日期: 2021-06-06

  网络出版日期: 2021-06-29

基金资助

国家重点基础研究发展计划(973计划, No. 2010CB833802); 国家自然科学基金(81273384); 国家自然科学基金(90913024); 国家自然科学基金(91313303); 长江学者和创新团队发展计划(IRT_17R68); 国家杰出青年科学基金(30325044)

Synthesis of (E)-N-(4-Styrene) Acrylamides for DNA Topoisomerase IIα Inhibitors and Antitumor Agents

  • Lijun Yin ,
  • Chaoqun Li ,
  • Xiaoxia Wu ,
  • Guangsen Xu ,
  • Zhiying Li ,
  • Yuemao Shen
Expand
  • Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012
* Corresponding author. E-mail:

Received date: 2021-05-06

  Revised date: 2021-06-06

  Online published: 2021-06-29

Supported by

National Basic Research Program of China (973 Program, No. 2010CB833802); National Natural Science Foundation of China(81273384); National Natural Science Foundation of China(90913024); National Natural Science Foundation of China(91313303); Program for Changjiang Scholars and Innovative Research Team in University(IRT_17R68); Distinguished Young Scholars Grant(30325044)

摘要

人DNA拓扑异构酶IIα (topoisomerase IIα, Topo IIα)是重要的抗肿瘤药物靶标之一. 为发现新的高效、低毒Topo IIα抑制剂, 本研究通过对先导化合物CL-2进行骨架跃迁, 设计合成了18个(E)-N-(4-苯乙烯基)丙烯酰胺衍生物(A1~A9, B1~B9). 18个化合物对人三阴性乳腺癌MDA-MB-231细胞和人急性骨髓性白血病KG1细胞生长的抑制实验结果表明, (E)-N-(4-((E)-3,5-二羟基苯乙烯基)苯基)-3-(邻-甲苯基)丙烯酰胺(B1)和(E)-N-(4-((E)-3,5-二羟基苯乙烯基)苯基)-3-(4-硝基苯基)丙烯酰胺(B9)抑制KG1细胞生长的IC50分别为0.43和0.5 μmol/L; (E)-N-(4-((E)-3,5-二羟基苯乙烯基)苯基)-3-(2-羟基苯基)丙烯酰胺(B4)对MDA-MB-231细胞的生长抑制作用(IC50=0.82 μmol/L)超过阳性对照VP16 (IC50=6.62 μmol/L). (E)-N-(4-((E)-3,5-二甲氧基苯乙烯基)苯基)-3-(邻-甲苯基)丙烯酰胺(A1)、B1、(E)-N-(4-((E)-3,5-二甲氧基苯乙烯基)苯基)-3-(2-甲氧苯基)丙烯酰胺(A4)、B4、(E)-N-(4-((E)-3,5-二甲氧基苯乙烯基)苯基)-3-(噻吩-3-基)丙烯酰胺(A9)和B9体外抑制Topo IIα介导的DNA松弛作用. 研究结果为发现新骨架Topo IIα抑制剂提供了新方向.

本文引用格式

尹丽君 , 李超群 , 吴晓霞 , 徐广森 , 李志颖 , 沈月毛 . (E)-N-(4-苯乙烯基)丙烯酰胺类DNA拓扑异构酶IIα抑制剂的合成及抗肿瘤活性研究[J]. 有机化学, 2022 , 42(1) : 293 -301 . DOI: 10.6023/cjoc202105008

Abstract

Human DNA topoisomerase IIα (Topo IIα) is one of the important targets of antitumor drugs. In this study, eighteen (E)-N-(4-styrene) acrylamide derivatives (A1~A9, B1~B9) were designed and synthesized through skeleton hopping of the lead compound CL-2 for the discovery of new high-efficient and low-toxic Topo IIα inhibitors. In vitro growth inhibition experiments of human triple negative breast cancer MDA-MB-231 cells and human acute myeloid leukemia KG1 cells were carried out for these eighteen compounds. Amongst, (E)-N-(4-((E)-3,5-dihydroxystyryl)phenyl)-3-(o-tolyl) acrylamide (B1) and (E)-N-(4-((E)-3,5-dihydroxystyryl)phenyl)-3-(4-nitrophenyl) acrylamide (B9) showed evident cytotoxicity against the KG1 cells with the IC50 values of 0.43 and 0.5 μmol/L, respectively. (E)-N-(4-((E)-3,5-dihydroxyphenyl)phenyl)-3-(2- hydroxyphenyl) acrylamide (B4) showed stronger growth inhibitory effect (IC50=0.82 μmol/L) against the MDA-MB-231 cells than that of the positive control VP16 (IC50=6.62 μmol/L). (E)-N-(4-((E)-3,5-Dimethoxystyryl)phenyl)-3-(o-tolyl)- acrylamide (A1)、B1、(E)-N-(4-((E)-3,5-dimethoxystyryl)phenyl)-3-(2-methoxyphenyl)acrylamide (A4)、B4、(E)-N-(4-((E)- 3,5-dimethoxystyryl)phenyl)-3-(thiophen-3-yl)acrylamide (A9) and B9 inhibited Topo IIα-mediated DNA relaxation in vitro. These results provide a new direction for the discovery of new skeleton Topo IIα inhibitors.

参考文献

[1]
The International Agency for Research on Cancer (IARC), 2020. Available from https://www.iarc.fr/fr/news-events/latest-global-cancer-data-cancer-burden-rises-to-19-3-million-new-cases-and-10- 0-million-cancer-deaths-in-2020/.
[2]
Infante Lara, L.; Sledge, A.; Laradji, A.; Okoro, C. O.; Osheroff, N. Bioorg. Med. Chem. Lett. 2017, 27, 586.
[3]
Ortega, J. A.; Riccardi, L.; Minniti, E.; Borgogno, M.; Arencibia, J. M.; Greco, M. L.; Minarini, A.; Sissi, C.; De Vivo, M. J. Med. Chem. 2018, 61, 1375.
[4]
Wang, Y.; Sun, H.; Xiao, Z.; Zhang, G.; Zhang, D.; Bao, X.; Li, F.; Wu, S.; Gao, Y.; Wei, N. Cell Commun. Signal 2018, 16, 52.
[5]
Heck, M. M.; Earnshaw, W. C. J. Cell Biol. 1986, 103, 2569.
[6]
Lyu, Y. L.; Lin, C. P.; Azarova, A. M.; Cai, L.; Wang, J. C.; Liu, L. F. Mol. Cell Biol. 2006, 26, 7929.
[7]
Murty, M. S. R.; Penthala, R.; Polepalli, S.; Jain, N. Med. Chem. Res. 2016, 25, 627.
[8]
Smith, T. P.; Windsor, I. W.; Forest, K. T.; Raines, R. T. J. Med. Chem. 2017, 60, 7820.
[9]
Xu, X. T.; Deng, X. Y.; Chen, J.; Liang, Q. M.; Zhang, K.; Li, D. L.; Wu, P. P.; Zheng, X.; Zhou, R. P.; Jiang, Z. Y.; Ma, A. J.; Chen, W. H.; Wang, S. H. Eur. J. Med. Chem. 2020, 189, 112013.
[10]
Harper, D. E.; Welch, D. R. J. Antibiot. (Tokyo) 1992, 45, 1827.
[11]
Sun, C. L.; Qu, P. P.; Li, F. Catal. Sci. Technol. 2014, 4, 988.
[12]
Yang, Y. H.; Li, G. H.; Song, Z. W.; Yang, X. L.; Liu, P. Lett. Org. Chem. 2010, 7, 533.
[13]
Hollywood, F.; Suschitzky, H.; Hull, R. Synthesis-Stuttgart 1982, 662.
[14]
Cai, M. Z.; Zhao, H.; Hu, W. Y. Chin. J. Chem. 2005, 23, 443.
[15]
Maity, R.; Naskar, S.; Das, I. J. Org. Chem. 2018, 83, 2114.
[16]
Naskar, D.; Roy, S. J. Chem. Soc., Perkin Trans. 1 1999, 2435.
[17]
Feng, Z. X.; Zheng, Y. D.; Zhao, L.; Zhang, Z. Y.; Sun, Y.; Qiao, K.; Xie, Y. J.; Wang, Y. S.; He, W. Mater. Sci. Eng. C 2019, 104, 109944.
[18]
Mo, X. Y.; Wu, F. L.; Yu, B. L.; Wang, W. L.; Cai, X. L. Appl. Clay Sci. 2020, 193, 105664.
[19]
Shou, J. Q.; Wang, M.; Cheng, X. L.; Wang, X. Y.; Zhang, L. F.; Liu, Y. C.; Fei, C. Z.; Wang, C. M.; Gu, F.; Xue, F. Q.; Li, J.; Zhang, K. Y. Arch. Pharm. Res. 2020, 43, 271.
[20]
Chen, W. B.; Balakrishnan, K.; Kuang, Y. Y.; Han, Y. Y.; Fu, M.; Gandhi, V.; Peng, X. H. J. Med. Chem. 2014, 57, 4498.
[21]
Gootz, T. D.; Barrett, J. F.; Sutcliffe, J. A. Antimicrob. Agents Chemother. 1990, 34, 8.
[22]
Marini, J. C.; Levene, S. D.; Crothers, D. M.; Englund, P. T. Proc. Natl. Acad. Sci. Biol. 1982, 79, 7664.
[23]
Shen, Y.; Chen, W.; Li, Z. Y.; Shen, Y. M. Med. Chem. 2014, 10, 533.
[24]
Shen, Y.; Chen, W.; Zhao, B. B.; Hao, H. L.; Li, Z. Y.; Lu, C. H.; Shen, Y. M. Biochem. Biophys. Res. Commun. 2014, 453, 302.
[25]
Xiao, X.; Cushman, M. J. Am. Chem. Soc. 2005, 127, 9960.
[26]
Spitzer, R.; Jain, A. N. J. Comput. Aided Mol. Des. 2012, 26, 687.
[27]
Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. J. Comput. Chem. 2009, 30, 2785.
[28]
Sanner, M. F. J. Mol. Graphics Modell. 1999, 17, 57.
文章导航

/