钴催化2-芳基吲哚氧化去芳构化及与烯酰胺[3+2]环化反应
收稿日期: 2021-04-27
修回日期: 2021-06-24
网络出版日期: 2021-07-06
基金资助
国家自然科学基金(21772142); 国家自然科学基金(21961142015); 国家重点研发计划(2019YFA0905100)
Cobalt-Catalyzed Aerobic Oxidative Dearomatization of 2-Aryl Indoles and in situ [3+2] Annulation with Enamides
Received date: 2021-04-27
Revised date: 2021-06-24
Online published: 2021-07-06
Supported by
National Natural Science Foundation of China(21772142); National Natural Science Foundation of China(21961142015); National Key Research & Development Program of China(2019YFA0905100)
黄音君 , 李金山 , 李珅 , 马军安 . 钴催化2-芳基吲哚氧化去芳构化及与烯酰胺[3+2]环化反应[J]. 有机化学, 2021 , 41(10) : 4028 -4038 . DOI: 10.6023/cjoc202104057
An one-pot reaction for the rapid construction of tricyclic fused indoline frameworks from 2-aryl indoles and N-acetyl enamides under oxygen atmosphere has been developed. The notable features of this method involve easy availability of starting materials, simple manipulation, good regio- and diastereo-selectivity, as well as environmentally friendly conditions. Mechanistic studies indicated that this reaction proceeds via oxidative dearomatization and subsequent [3+2] annulation with enamides.
Key words: cobalt-catalysis; oxidative dearomatization; annulation; indoles; enamides
[1] | (a) Fattorusso, E.; Taglialatela-Scafati, O. Modern Alkaloids: Structure, Isolation, Synthesis and Biology, Wiley-VCH, Weinheim, 2008. |
[1] | (b) Crich, D.; Banerjee, A. Acc. Chem. Res. 2007, 40, 151. |
[1] | (c) Ruiz-Sanchis, P.; Savina, S. A.; Albericio, F.; Álvarez, M. Chem.-Eur. J. 2011, 17, 1388. |
[1] | (d) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257. |
[2] | For reviews, see: (a) Roche, S. P.; Porco Jr., J. A. Angew. Chem. Int. Ed. 2011, 50, 4068. |
[2] | (b) Zhuo, C.-X.; Zhang, W.; You, S.-L. Angew. Chem. Int. Ed. 2012, 51, 12662. |
[2] | (c) Repka, L. M.; Reisman, S. E. J. Org. Chem. 2013, 78, 12314. |
[2] | (d) Ding, Q.; Zhou, X.; Fan, R. Org. Biomol. Chem. 2014, 12, 4807. |
[2] | (e) Roche, S. P.; Youte Tendoung, J.-J.; Tréguier, B. Tetrahedron 2015, 71, 3549. |
[2] | (f) Zheng, C.; You, S.-L. Chem 2016, 1, 830. |
[2] | (g) Bariwal, J.; Voskressensky, L. G.; Van der Eycken, E. V. Chem. Soc. Rev. 2018, 47, 3831. |
[2] | (h) Wang, Y.; Xie, F.; Lin, B.; Cheng, M.; Liu, Y. Chem.-Eur. J. 2018, 24, 14302. |
[2] | (i) Norwood IV, V. M.; Huigens III, R. W. ChemBioChem 2019, 20, 2273. |
[2] | (j) Zeidan, N.; Lautens, M. Synthesis 2019, 51, 4137. |
[2] | (k) Zheng, C.; You, S.-L. Nat. Prod. Rep. 2019, 36, 1589. |
[2] | (l) Zhu, M.; Zhang, X.; You, S. Chem. J. Chin. Univ. 2020, 41, 1407. (in Chinese) |
[2] | 朱敏, 张霄, 游书力, 高等学校化学学报, 2020, 41, 1407.) |
[2] | For selected recent examples, see: (m) Huang, L.; Cai, Y.; Zhang, H.-J.; Zheng, C.; Dai, L.-X.; You, S.-L. CCS Chem. 2019, 1, 106. |
[2] | (n) Yang, P.; Xu, R.-Q.; Zheng, C.; You, S.-L. Chin. J. Chem. 2020, 38, 235. |
[2] | (o) Yuan, W.-C.; Zhou, X.-J.; Zhao, J.-Q.; Chen, Y.-Z.; You, Y.; Wang, Z.-H. Org. Lett. 2020, 22, 7088. |
[2] | (p) Gao, X.; Yuan, Y.; Xie, X.; Zhang, Z. Chem. Commun. 2020, 56, 14047. |
[2] | (q) Zhu, M.; Huang, X.-L.; Xu, H.; Zhang, X.; Zheng, C.; You, S.-L. CCS Chem. 2021, 3, 652. |
[2] | (r) Wang, R.; Xu, L.; Lu, Y.; Jiang, B.; Hao, W. Chin. J. Org. Chem. 2021, 41, 1582. |
[3] | For review, see: Zhuo, C.-X.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2014, 47, 2558. |
[4] | For review, see: Denizot, N.; Tomakinian, T.; Beaud, R.; Kouklovsky, C.; Vincent, G. Tetrahedron Lett. 2015, 56, 4413. |
[5] | For review, see: Liang, X.-W.; Zheng, C.; You, S.-L. Chem.-Eur. J. 2016, 22, 11918. |
[6] | For review, see: Huang, G.; Yin, B. Adv. Synth. Catal. 2019, 361, 405. |
[7] | For selected examples, see: (a) Schkeryantz, J. M.; Woo, J. C. G.; Danishefsky, S. J. J. Am. Chem. Soc. 1995, 117, 7025. |
[7] | (b) Sunazuka, T.; Hirose, T.; Shirahata, T.; Harigaya, Y.; Hayashi, M.; Komiyama, K.; Ōmura, S.; Smith, A. B. J. Am. Chem. Soc. 2000, 122, 2122. |
[7] | (c) Baran, P. S.; Guerrero, C. A.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 5628. |
[7] | (d) May, J. P.; Fournier, P.; Pellicelli, J.; Patrick, B. O.; Perrin, D. M. J. Org. Chem. 2005, 70, 8424. |
[7] | (e) May, J. P.; Patrick, B. O.; Perrin, D. M. Synlett 2006, 3403. |
[7] | (f) González-Vera, J. A.; Teresa García-López, M.; Herranz, R. Tetrahedron 2007, 63, 9229. |
[7] | (g) Tu, D.; Ma, L.; Tong, X.; Deng, X.; Xia, C. Org. Lett. 2012, 14, 4830. |
[7] | (h) Zhao, L.; May, J. P.; Huang, J.; Perrin, D. M. Org. Lett. 2012, 14, 90. |
[7] | (i) Han, L.; Liu, C.; Zhang, W.; Shi, X.-X.; You, S.-L. Chem. Commun. 2014, 50, 1231. |
[7] | (j) Peng, Q.-L.; Luo, S.-P.; Xia, X.-E.; Liu, L.-X.; Huang, P.-Q. Chem. Commun. 2014, 50, 1986. |
[7] | (k) Xu, C.-P.; Luo, S.-P.; Wang, A.-E.; Huang, P.-Q. Org. Biomol. Chem. 2014, 12, 2859. |
[7] | (l) Han, L.; Zhang, W.; Shi, X.-X.; You, S.-L. Adv. Synth. Catal. 2015, 357, 3064. |
[7] | (m) Liu, Z.-J.; Huang, P.-Q. J. Org. Chem. 2019, 84, 5627. |
[7] | (n) Sawano, T.; Yamamoto, H. ACS Catal. 2019, 9, 3384. |
[8] | (a) Sang, P.; Xie, Y.; Zou, J.; Zhang, Y. Adv. Synth. Catal. 2012, 354, 1873. |
[8] | (b) Huang, H.; Cai, J.; Ji, X.; Xiao, F.; Chen, Y.; Deng, G.-J. Angew. Chem. Int. Ed. 2016, 55, 307. |
[8] | (c) Yamashita, M.; Nishizono, Y.; Himekawa, S.; Iida, A. Tetrahedron 2016, 72, 4123. |
[9] | For selected examples, see: (a) Capdevielle, P.; Maumy, M. Tetrahedron Lett. 1993, 34, 2953. |
[9] | (b) Yamashita, M.; Iida, A. Tetrahedron Lett. 2014, 55, 2991. |
[9] | (c) Lin, F.; Chen, Y.; Wang, B.; Qin, W.; Liu, L. RSC Adv. 2015, 5, 37018. |
[9] | (d) Guchhait, S. K.; Chaudhary, V.; Rana, V. A.; Priyadarshani, G.; Kandekar, S.; Kashyap, M. Org. Lett. 2016, 18, 1534. |
[9] | (e) Zhang, C.; Li, S.; Bureš, F.; Lee, R.; Ye, X.; Jiang, Z. ACS Catal. 2016, 6, 6853. |
[9] | (f) Cao, W.-B.; Chu, X.-Q.; Zhou, Y.; Yin, L.; Xu, X.-P.; Ji, S.-J. Chem. Commun. 2017, 53, 6601. |
[9] | (g) Deng, Z.; Peng, X.; Huang, P.; Jiang, L.; Ye, D.; Liu, L. Org. Biomol. Chem. 2017, 15, 442. |
[9] | (h) Liu, X.-X.; Luo, X.-L.; Wu, Z.-Y.; Cui, X.-F.; Zhou, X.-Q.; He, Y.-Q.; Huang, G.-S. J. Org. Chem. 2017, 82, 2107. |
[9] | (i) Cao, W.-B.; Liu, B.-B.; Xu, X.-P.; Ji, S.-J. Org. Chem. Front. 2018, 5, 1194. |
[9] | (j) Guo, S.; Wang, F.; Tao, L.; Zhang, X.; Fan, X. J. Org. Chem. 2018, 83, 3889. |
[9] | (k) Zhou, X.-Y.; Chen, X.; Wang, L.-G.; Yang, D.; Li, J.-H. Synlett 2018, 29, 835. |
[9] | (l) Ding, X.; Dong, C.-L.; Guan, Z.; He, Y.-H. Angew. Chem. Int. Ed. 2019, 58, 118. |
[9] | (m) Jiang, X.; Zhu, B.; Lin, K.; Wang, G.; Su, W.-K.; Yu, C. Org. Biomol. Chem. 2019, 17, 2199. |
[9] | (n) Liu, X.; Yan, X.; Tang, Y.; Jiang, C.-S.; Yu, J.-H.; Wang, K.; Zhang, H. Chem. Commun. 2019, 55, 6535. |
[9] | (o) Liu, X.; Yan, X.; Yu, J.-H.; Tang, Y.-D.; Wang, K.; Zhang, H. Org. Lett. 2019, 21, 5626. |
[9] | (p) Patel, O. P. S.; Dhiman, S.; Khan, S.; Shinde, V. N.; Jaspal, S.; Srivathsa, M. R.; Jha, P. N.; Kumar, A. Org. Biomol. Chem. 2019, 17, 5962. |
[9] | (q) Shukla, G.; Dahiya, A.; Alam, T.; Patel, B. K. Asian J. Org. Chem. 2019, 8, 2243. |
[9] | (r) Zhang, L.-L.; Cao, W.-B.; Xu, X.-P.; Ji, S.-J. Org. Chem. Front. 2019, 6, 1787. |
[9] | (s) Lu, F.-Y.; Chen, Y.-J.; Chen, Y.; Ding, X.; Guan, Z.; He, Y.-H. Chem. Commun. 2020, 56, 623. |
[10] | For reviews, see: (a) Carbery, D. R. Org. Biomol. Chem. 2008, 6, 3455. |
[10] | (b) Matsubara, R.; Kobayashi, S. Acc. Chem. Res. 2008, 41, 292. |
[11] | For selected examples, see: (a) Hayashi, Y.; Gotoh, H.; Masui, R.; Ishikawa, H. Angew. Chem. Int. Ed. 2008, 47, 4012. |
[11] | (b) Zu, L.; Xie, H.; Li, H.; Wang, J.; Yu, X.; Wang, W. Chem.-Eur. J. 2008, 14, 6333. |
[11] | (c) Noole, A.; Borissova, M.; Lopp, M.; Kanger, T. J. Org. Chem. 2011, 76, 1538. |
[11] | (d) Wan, J.-P.; Loh, C. C. J.; Pan, F.; Enders, D. Chem. Commun. 2012, 48, 10049. |
[11] | (e) Ding, X.-F.; Su, R.-H.; Yang, W.-L.; Deng, W.-P. Adv. Synth. Catal. 2018, 360, 4168. |
[12] | (a) Qiao, B.; Cao, H.-Q.; Huang, Y.-J.; Zhang, Y.; Nie, J.; Zhang, F.-G.; Ma, J.-A. Chin. J. Chem. 2018, 36, 809. |
[12] | (b) Feng, F.-F.; Li, J.-S.; Li, S.; Ma, J.-A. Adv. Synth. Catal. 2019, 361, 4222. |
[12] | (c) Feng, F.-F.; Li, S.; Cheung, C. W.; Ma, J.-A. Org. Lett. 2019, 21, 8419. |
[12] | (d) Cao, H.-Q.; Liu, H.-N.; Liu, Z.-Y.; Qiao, B.-K.; Zhang, F.-G.; Ma, J.-A. Chem.-Eur. J. 2020, 26, 5515. |
[12] | (e) Zhang, Y.; Li, J.-K.; Zhang, F.-G.; Ma, J.-A. J. Org. Chem. 2020, 85, 5580. |
[12] | (f) Cao, H.-Q.; Liu, H.-N.; Liu, Z.-Y.; Qiao, B.-K.; Zhang, F.-G.; Ma, J.-A. Org. Lett. 2020, 22, 6414. |
[13] | For reviews, see: Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381. |
[14] | (a) Dufour-Ricroch, M. N.; Gaudemer, A. Tetrahedron Lett. 1976, 17, 4079. |
[14] | (b) Nishinaga, A.; Tomita, H. J. Mol. Catal. 1980, 7, 179. |
[14] | (c) Niederhoffer, E. C.; Timmons, J. H.; Martell, A. E. Chem. Rev. 1984, 84, 137. |
[14] | (d) Bailey, C. L.; Drago, R. S. Coord. Chem. Rev. 1987, 79, 321. |
[15] | For preparation of 6, see: Li, J.-S.; Liu, Y.-J.; Zhang, G.-W.; Ma, J.-A. Org. Lett. 2017, 19, 6364. |
[16] | (a) Li, P.; Yong, W.; Sheng, R.; Rao, W.; Zhu, X.; Zhang, X. Adv. Synth. Catal. 2019, 361, 201. |
[16] | (b) Reiss, H.; Shalit, H.; Vershinin, V.; More, N. Y.; Forckosh, H.; Pappo, D. J. Org. Chem. 2019, 84, 7950. |
[17] | Lian, X.-L.; Lei, H.; Quan, X.-J.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. Chem. Commun. 2013, 49, 8196. |
[18] | Reeves, J. T.; Tan, Z.; Han, Z. S.; Li, G.; Zhang, Y.; Xu, Y.; Reeves, D. C.; Gonnella, N. C.; Ma, S.; Lee, H.; Lu, B. Z.; Senanayake, C. H. Angew. Chem. Int. Ed. 2012, 51, 1400. |
/
〈 |
|
〉 |