基于O-环己二烯酮型1,6-烯炔合成氢化苯并呋喃的反应研究进展
收稿日期: 2021-05-15
修回日期: 2021-06-21
网络出版日期: 2021-07-06
基金资助
国家自然科学基金(22001140); 山东省自然科学基金(ZR2020QB002)
Progress in the Synthesis of Hydrobenzofurans from O-Cyclohexadienone-tethered 1,6-Enynes
Received date: 2021-05-15
Revised date: 2021-06-21
Online published: 2021-07-06
Supported by
National Natural Science Foundation of China(22001140); Natural Science Foundation of Shandong Province(ZR2020QB002)
氢化苯并呋喃骨架广泛存在于生物活性分子、天然产物和药物分子中, 过渡金属催化的O-环己二烯酮型1,6-烯炔经分子内或分子间C—H键官能团化/环化串联反应是构建这类骨架较为经济、有效的方法. 总结了过渡金属催化O-环己二烯酮型1,6-烯炔经C—H键官能团化/环化串联反应合成氢化苯并呋喃类化合物反应的研究进展, 主要介绍了各类过渡金属催化的反应类型、反应机理和手性控制中配体的选择, 并对该领域所面临的挑战和发展前景进行了展望与探讨.
关键词: O-环己二烯酮型1,6-烯炔; 环化反应; C—H键官能团化; 氢化苯并呋喃
李志清 , 邱潇杨 , 孟楠 , 柳竹青 . 基于O-环己二烯酮型1,6-烯炔合成氢化苯并呋喃的反应研究进展[J]. 有机化学, 2021 , 41(11) : 4306 -4319 . DOI: 10.6023/cjoc202105029
Hydrobenzofurans are abundant in bioactive molecules, natural products and drug molecules. Transition-metal- catalyzed intramolecular or intermolecular C—H bond functionalization/cyclization cascade of O-linkered cyclohexadienone-tethered 1,6-enynes is an economic and efficient way to construct this skeleton. The progress in the synthesis of hydrobenzofurans from cyclohexadienone-tethered 1,6-enynes via C—H bond functionalization/cyclization cascade catalyzed by different transition-metals is discussed. The relevant reaction modes, mechanisms and the selection of ligands for chiral control are mainly introduced. Finally, the challenges and development prospects in this field are also prospected and discussed.
[1] | (a) Al-Tel, T. H.; Srinivasulu, V.; Ramanathan, M.; Soares, N. C.; Sebastian, A.; Bolognesi, M. L.; Abu-Yousef, I. A.; Majdalawieh, A. Org. Biomol. Chem. 2020, 18, 8526. |
[1] | (b) Shu, T.; Cossy, J. Chem. Soc. Rev. 2021, 50, 658. |
[1] | (c) Reddy, C. R.; Yarlagadda, S.; Sridhar, B.; Reddy, B. V. S. Eur. J. Org. Chem. 2017, 2017, 5763. |
[2] | (a) Chen, B.; He, C. Y.; Chu, W. D.; Liu, Q. Z. Org. Chem. Front. 2021, 8, 825. |
[2] | (b) Magdziak, D.; Meek, S. J.; Pettus, T. R. R. Chem. Rev. 2004, 104, 1383. |
[2] | (c) Canesi, S.; Maertens, G.; Ménard, M.-A. Synthesis 2014, 46, 1573. |
[2] | (d) Yang, W.; Sun, Z.; Zhang, J.; Li, Z.; Deng, W. P. Org. Chem. Front. 2019, 37, 216. |
[2] | (e) Kalstabakken, K. A.; Harned, A. M. Tetrahedron 2014, 70, 9571. |
[3] | Tello-Aburto, R.; Harned, A. M. Org. Lett. 2009, 11, 3998. |
[4] | (a) Wegner, J.; Ley, S. V.; Kirschning, A.; Hansen, A.-L.; Garcia, J. M.; Baxendale, I. R. Org. Lett. 2012, 14, 696. |
[4] | (b) Zhao, K.; Cheng, G.-J.; Yang, H.; Shang, H.; Zhang, X.; Wu, Y.-D.; Tang, Y. Org. Lett. 2012, 14, 4878. |
[4] | (c) Hexum, J. K.; Tello-Aburto, R.; Struntz, N. B.; Harned, A. M.; Harki, D. A. ACS Med. Chem. Lett. 2012, 3, 459. |
[4] | (d) Zhong, Y.-H.; Luo, Y.-X.; Luo, N.-H. Chin. J. Synth. Chem. 2020, 28, 1012. (in Chinese) |
[4] | (钟瑜红, 罗玉欣, 罗年华, 合成化学, 2020, 28, 1012.) |
[4] | (e) Zhang, Z. Y.; Jiao, N. Chin. J. Org. Chem. 2020, 40, 1790. (in Chinese) |
[4] | (张梓曜, 焦宁, 有机化学, 2020, 40, 1790.) |
[4] | (f) Yang, M.; Cao, S. X.; He, Z. J. Chin. J. Org. Chem. 2019, 39, 2235. (in Chinese) |
[4] | (杨梅, 曹仕轩, 贺峥杰, 有机化学, 2019, 39, 2235.) |
[4] | (g) Shi, W. Y.; Xu, J. Q.; Mao, B. M.; Jia, H.; Huang, J. X.; Guo, H. C. Chin. J. Org. Chem. 2020, 40, 756. (in Chinese) |
[4] | (史望宇, 徐嘉擎, 毛比明, 贾皓, 黄家兴, 郭红超, 有机化学, 2020, 40, 756.) |
[5] | Anulakanapakorn, K.; Bunyapraphatsara, N.; Satayavivad, J. J. Sci. Soc. Thailand 1987, 13, 71. |
[6] | Jetty, A.; Iyengar, D. S. Pharm. Biol. 2011, 38, 157. |
[7] | Gao, Y.-P.; Shen, Y.-H.; Zhang, S.-D.; Tian, J.-M.; Zeng, H.-W.; Ye, J.; Li, H.-L.; Shan, L.; Zhang, W.-D. Org. Lett. 2012, 14, 1954. |
[8] | Liu, Q.; Rovis, T. J. Am. Chem. Soc. 2006, 128, 2552. |
[9] | Takizawa, S.; Nguyen, T. M.; Grossmann, A.; Enders, D.; Sasai, H. Angew. Chem., Int. Ed. 2012, 51, 5423. |
[10] | (a) Wu, W.; Chen, T.; Chen, J.; Han, X. J. Org. Chem. 2018, 83, 1033. |
[10] | (b) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. |
[11] | Tello-Aburto, R.; Kalstabakken, K. A.; Harned, A. M. Org. Biomol. Chem. 2013, 11, 5596. |
[12] | Murthy, A. S.; Donikela, S.; Reddy, C. S.; Chegondi, R. J. Org. Chem. 2015, 80, 5566. |
[13] | Bellina, F.; Rossi, R. Chem. Rev. 2010, 110, 082. |
[14] | Takenaka, K.; Mohanta, S. C.; Sasai, H. Angew. Chem., Int. Ed. 2014, 53, 4675. |
[15] | Singh, A.; Shukla, R. K.; Volla, C. M. R. Chem. Commun. 2019, 55, 13442. |
[16] | Zhao, W.-C.; Wang, X.; Feng, J.; Tian, P.; He, Z.-T. Tetrahedron 2021, 79, 131862. |
[17] | Keilitz, J.; Newman, S. G.; Lautens, M. Org. Lett. 2013, 15, 1148. |
[18] | He, Z. T.; Tian, B.; Fukui, Y.; Tong, X.; Tian, P.; Lin, G. Q. Angew. Chem., Int. Ed. 2013, 52, 5314. |
[19] | Li, Q.-H.; Gao, D.; He, C.-Y.; Liao, Q.; Tan, Y.-X.; Wang, Y.-H.; Ding, R.; Lin, G.-Q.; Tian, P. Cell Rep. Phys. Sci. 2020, 1, 100222. |
[20] | Connor, C. J. O.; Beckmann, H. S.; Spring, D. R. Chem. Soc. Rev. 2012, 41, 4444. |
[21] | Fukui, Y.; Liu, P.; Liu, Q.; He, Z. T.; Wu, N. Y.; Tian, P.; Lin, G. Q. J. Am. Chem. Soc. 2014, 136, 15607. |
[22] | Zhou, X. L.; Pan, Y.; Li, X. W. Angew. Chem., Int. Ed. 2017, 56, 8163. |
[23] | Lu, H.; Fan, Z.; Xiong, C.; Zhang, A. Org. Lett. 2018, 20, 3065. |
[24] | Tan, Y.-X.; Liu, X.-Y.; Zhang, S.-Q.; Xie, P.-P.; Wang, X.; Feng, K.-R.; Yang, S.-Q.; He, Z.-T.; Hong, X.; Tian, P.; Lin, G.-Q. CCS Chem. 2021, 3, 1582. |
[25] | Gao, D.; Wang, F.; Liu, X. Y.; Feng, K. R.; Zhao, J. Y.; Wang, Y. H.; Yang, X. D.; Tian, P.; Lin, G. Q. Adv. Synth. Catal. 2020, 362, 4384. |
[26] | Gollapelli, K. K.; Donikela, S.; Manjula, N.; Chegondi, R. ACS catal. 2018, 8, 1440. |
[27] | (a) Schobert, H. Chem. Rev. 2014, 114, 1743. |
[27] | (b) Shirakura, M.; Suginome, M. Angew. Chem., Int. Ed. 2010, 49, 3827. |
[27] | (c) Sawano, T.; Ashouri, A.; Nishimura, T.; Hayashi, T. J. Am. Chem. Soc. 2012, 134, 18936. |
[28] | Duan, C. L.; Tan, Y. X.; Zhang, J. L.; Yang, S.; Dong, H. Q.; Tian, P.; Lin, G. Q. Org. Lett. 2019, 21, 1690. |
[29] | Teng, Q.; Thirupathi, N.; Tung, C. H.; Xu, Z. Chem. Sci. 2019, 10, 6863. |
[30] | Teng, Q.; Mao, W.; Chen, D.; Wang, Z.; Tung, C. H.; Xu, Z. Angew. Chem., Int. Ed. 2020, 59, 2220. |
[31] | Jiang, Y.; Li, P.; Wang, J.; Zhao, J.; Li, Y.; Zhang, Y.; Chang, J.; Liu, B.; Li, X. Org. Lett. 2020, 22, 438. |
[32] | Su, L.; Dong, J.; Liu, L.; Sun, M.; Qiu, R.; Zhou, Y.; Yin, S. F. J. Am. Chem. Soc. 2016, 138, 12348. |
[33] | Liu, P.; Fukui, Y.; Tian, P.; He, Z. T.; Sun, C. Y.; Wu, N. Y.; Lin, G. Q. J. Am. Chem. Soc. 2013, 135, 11700. |
[34] | He, C.-Y.; Xie, L.-B.; Ding, R.; Tian, P.; Lin, G.-Q. Tetrahedron 2019, 75, 1682. |
[35] | Anugu, R. R.; Chegondi, R. J. Org. Chem. 2017, 82, 6786. |
[36] | Xu, G.; Liu, K.; Sun, J. T. Org. Lett. 2017, 19, 6440. |
[37] | McCoull, W.; Augustin, M.; Blake, C.; Ertan, A.; Kilgour, E.; Krapp, S.; Moore, J. E.; Newcombe, N. J.; Packer, M. J.; Rees, A.; Revill, J.; Scott, J. S.; Selmi, N.; Gerhardt, S.; Ogg, D. J.; Steinbacherc, S.; Whittamorea, P. R. O. Med. Chem. Commun. 2014, 5, 57. |
[38] | Pitts, C. R.; Lectka, T. Chem. Rev. 2014, 114, 7930. |
[39] | Shu, T.; Zhao, L.; Li, S.; Chen, X. Y.; von Essen, C.; Rissanen, K.; Enders, D. Angew. Chem., Int. Ed. 2018, 57, 10985. |
[40] | (a) Hoffmann-Roder, A.; Krause, N. Angew. Chem., Int. Ed. 2004, 43, 1196. |
[40] | (b) Ma, S. Chem. Rev. 2005, 105, 829. |
[41] | He, C. Y.; Tan, Y. X.; Wang, X.; Ding, R.; Wang, Y. F.; Wang, F.; Gao, D.; Tian, P.; Lin, G. Q. Nat. Commun. 2020, 11, 4293. |
[42] | Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. |
[43] | Cai, S.; Liu, Z.; Zhang, W.; Zhao, X.; Wang, D. Z. Angew. Chem., Int. Ed. 2011, 50, 11133. |
[44] | (a) Talele, T. T. J. Med. Chem. 2016, 59, 8712. |
[44] | (b) Peh, G.; Floreancig, P. E. Org. Lett. 2012, 14, 5614. |
[45] | Munakala, A.; Gollapelli, K. K.; Nanubolu, J. B.; Chegondi, R. Org. Lett. 2020, 22, 7019. |
[46] | (a) Wang, C. Synlett 2013, 24, 1606. |
[46] | (b) Hu, Y.; Zhou, B.; Wang, C. Acc. Chem. Res. 2018, 51, 816. |
[47] | Liu, B.; Li, J.; Hu, P.; Zhou, X.; Bai, D.; Li, X. ACS catal. 2018, 8, 9463. |
[48] | Tan, Y. X.; Liu, X. Y.; Zhao, Y. S.; Tian, P.; Lin, G. Q. Org. Lett. 2019, 21, 5. |
[49] | Jackson, E. P.; Malik, H. A.; Sormunen, G. J.; Baxter, R. D.; Liu, P.; Wang, H.; Shareef, A. R.; Montgomery, J. Acc. Chem. Res. 2015, 48, 1736. |
[50] | Kumar, R.; Hoshimoto, Y.; Tamai, E.; Ohashi, M.; Ogoshi, S. Nat. Commun. 2017, 8, 32. |
[51] | Tsujihara, T.; Tomeba, M.; Ohkubo-Sato, S.; Iwabuchi, K.; Koie, R.; Tada, N.; Tamura, S.; Takehara, T.; Suzuki, T.; Kawano, T. Tetrahedron Lett. 2019, 60, 151148. |
[52] | Cabrera-Lobera, N.; Rodroguez-Salamanca, P.; Nieto-Carmona, J. C.; BuÇuel, E.; Cárdenas, D. J. Chem.-Eur. J. 2018, 24, 784. |
[53] | Hong, Y. C.; Santhoshkumar, R.; Cheng, C. H. J. Chin. Chem. Soc. 2019, 66, 1221. |
[54] | Schultz, A. G.; Plummer, M.; Taveras, A. G.; Kullnig, R. K. J. Am. Chem. Soc. 1988, 110, 5547. |
[55] | (a) Zhu, S.; Pathigoolla, A.; Lowe, G.; Walsh, D. A.; Cooper, M.; Lewis, W.; Lam, H. W. Chem.-Eur. J. 2017, 23, 17598. |
[55] | (b) Nair, A. M.; Kumar, S.; Volla, C. M. R. Adv. Synth. Catal. 2019, 361, 4983. |
[55] | (c) Ma, X.-L.; Wang, Q.; Feng, X.-Y.; Mo, Z.-Y.; Pan, Y.-M.; Chen, Y.-Y.; Xin, M.; Xu, Y.-L. Green Chem. 2019, 21, 3547. |
[56] | Mallick, R. K.; Dutta, S.; Vanjari, R.; Voituriez, A.; Sahoo, A. K. J. Org. Chem. 2019, 84, 10509. |
/
〈 |
|
〉 |