铱催化异羟肟酸衍生物参与的分子间N—N键偶联反应合成酰肼
收稿日期: 2021-05-25
修回日期: 2021-06-22
网络出版日期: 2021-07-06
基金资助
国家自然科学基金(21725204); 国家自然科学基金(21901127); 中国博士后科学基金(2018M640225); 中国博士后科学基金(2019T120179)
Iridium-Catalyzed Intermolecular N—N Coupling for Hydrazide Synthesis Using N-Benzoyloxycarbamates as Acyl Nitrene Precursor
Received date: 2021-05-25
Revised date: 2021-06-22
Online published: 2021-07-06
Supported by
National Natural Science Foundation of China(21725204); National Natural Science Foundation of China(21901127); China Postdoctoral Science Foundation(2018M640225); China Postdoctoral Science Foundation(2019T120179)
宋方方 , 朱士阳 , 王浩 , 陈弓 . 铱催化异羟肟酸衍生物参与的分子间N—N键偶联反应合成酰肼[J]. 有机化学, 2021 , 41(10) : 4050 -4058 . DOI: 10.6023/cjoc202105044
An iridium-catalyzed intermolecular N—N coupling reaction using various N-benzoyloxyamides as acyl nitrene precursor for hydrazide synthesis has been developed. Unlike the carboxylic acid-derived dioxazolones used in previous report, this type of precursors allows the efficient synthesis of both acyl and oxycarbonyl substituted hydrazines from readily accessible precursors. Computational chemistry studies indicated that formation of the metal-acylnitrenoid intermediates via intramolecular hydrogen bond-assisted N—O cleavage may be the rate-determining step, and the subsequent nucleophilic attack of metal-acylnitrenoid by arylamines may be assisted by Cl…HN hydrogen bond to form the N—N bond.
Key words: iridium catalysis; nitrene; N—N coupling; hydrazide; N—H insertion
[1] | (a) Ke, S.; Sun, T.; Liang, Y.; Yang, Z. Chin. J. Org. Chem. 2010, 30, 1820. (in Chinese) |
[1] | (柯少勇, 孙婷婷, 梁英, 杨自文, 有机化学, 2010, 30, 1820.) |
[1] | (b) Blair, L. M.; Sperry, J. J. Nat. Prod. 2013, 76, 794. |
[1] | (c) Chen, L.; Deng, Z.; Zhao, C. ACS Chem. Biol. 2021, 16, 559. |
[2] | (a) Okuhara, M.; Kuroda, Y.; Goto, T.; Okamoto, M.; Terano, H.; Kohsaka, M.; Aoki, H.; Imanaka, H. J. Antibiot. 1980, 33, 13. |
[2] | (b) Ogita, T.; Gunji, S.; Fukazawa, Y.; Terahara, A.; Kinoshita, T.; Nagaki, H.; Beppu, T. Tetrahedron Lett. 1983, 24, 2283. |
[2] | (c) Broberg, A.; Menkis, A.; Vasiliauskas, R. J. Nat. Prod. 2006, 69, 97. |
[2] | (d) Wang, K.-K. A.; Ng, T. L.; Wang, P.; Huang, Z.; Balskus, E. P.; van der Donk, W. A. Nat. Commun. 2018, 9, 3687. |
[3] | Forquet, V.; Sabaté, C. M.; Jacob, G.; Guelou, Y.; Delalu, H.; Darwich, C. Chem.-Asian J. 2015, 10, 1668. |
[4] | Diccianni, J. B.; Hu, C.; Diao, T. Angew. Chem.,Int. Ed. 2016, 55, 7534. |
[5] | (a) Ragnarsson, U. Chem. Soc. Rev. 2001, 30, 205. |
[5] | (b) Wolter, M.; Klapars, A.; Buchwald, S. L. Org. Lett. 2001, 3, 3803. |
[6] | (a) Evans, D. A.; Johnson, D. S. Org. Lett. 1999, 1, 595. |
[6] | (b) Feng, G.; Wang, X.; Jin, J. Eur. J. Org. Chem. 2019, 6728. |
[6] | (c) Chen, J.; Shen, X.; Lu, Z. J. Am. Chem. Soc. 2020, 142, 14455. |
[7] | Guo, Q.; Lu, Z. Synthesis 2017, 49, 3835. |
[8] | (a) Rosen, B. R.; Werner, E. W.; O'Brien, A. G.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5571. |
[8] | (b) Pandit, P.; Yamamoto, K.; Nakamura, T.; Nishimura, K.; Kurashige, Y.; Yanai, T.; Nakamura, G.; Masaoka, S.; Furukawa, K.; Yakiyama, Y.; Kawano, M.; Higashibayashi, S. Chem. Sci. 2015, 6, 4160. |
[8] | (c) Ryan, M. C.; Martinelli, J. R.; Stahl, S. S. J. Am. Chem. Soc. 2018, 140, 9074. |
[8] | (d) Feng, N.; Hou, Z.; Xu, H. Chin. J. Org. Chem. 2019, 39, 1424. (in Chinese) |
[8] | (冯恩祺, 侯中伟, 徐海超, 有机化学, 2019, 39, 1424.) |
[8] | (e) Yin, D.; Jin, J. Eur. J. Org. Chem. 2019, 2019, 5646. |
[8] | (f) Ryan, M. C.; Kim, Y. J.; Gerken, J. B.; Wang, F.; Aristov, M. M.; Martinelli, J. R.; Stahl, S. S. Chem. Sci. 2020, 11, 1170. |
[8] | (g) Vemuri, P. Y.; Patureau, F. W. Org. Lett. 2021, 23, 3902. |
[9] | (a) Wallace, R. G. Aldrichim. Acta 1980, 13, 3. |
[9] | (b) Vidal, J.; Hannachi, J. C.; Hourdin, G.; Mulatier, J. C.; Collet, A. Tetrahedron Lett. 1998, 39, 8845. |
[9] | (c) Kang, C. W.; Sarnowski, M. P.; Elbatrawi, Y. M.; Del Valle, J. R. J. Org. Chem. 2017, 82, 1833. |
[9] | (d) Lei, L.; Li, C.; Mo, D. Chin. J. Org. Chem. 2019, 39, 2989. (in Chinese) |
[9] | (雷禄, 李承璟, 莫冬亮, 有机化学, 2019, 39, 2989.) |
[9] | (e) Zhang, Y.; He, J.; Song, P.; Wang, Y.; Zhu, S. CCS Chem. 2020, 2, 2259. |
[10] | (a) Li, J.; Cisar, J. S.; Zhou, C.-Y.; Vera, B.; Williams, H.; Rodríguez, A. D.; Cravatt, B. F.; Romo, D. Nat. Chem. 2013, 5, 510. |
[10] | (b) Kono, M.; Harada, S.; Nemoto, T. Chem.-Eur. J. 2019, 25, 3119. |
[10] | (c) Maestre, L.; Dorel, R.; Pablo, O.; Escofet, I.; Sameera, W. M. C.; Alvarez, E.; Maseras, F.; Diaz-Requejo, M. M.; Echavarren, A. M.; Perez, P. J. J. Am. Chem. Soc. 2017, 139, 2216. |
[10] | (d) Dehghany, M.; Eshon, J.; Roberts, J. M.; Schomaker, J. M. In Silver Catalysis in Organic Synthesis, Vol. 4, Eds.: Li, C.-J.; Bi, X., John Wiley & Sons, Weinheim, 2019, Chapter 8, pp. 439-532. |
[11] | (a) Shimbayashi, T.; Sasakura, K.; Eguchi, A.; Okamoto, K.; Ohe, K. Chem.-Eur. J. 2019, 25, 3156. |
[11] | (b) van Vliet, K. M.; de Bruin, B. ACS Catal. 2020, 10, 4751. |
[11] | (c) Wang, Y.-C.; Lai, X.-J.; Huang, K.; Yadav, S.; Qiu, G.; Zhang, L.; Zhou, H. Org. Chem. Front. 2021, 8, 1677. |
[11] | (d) Hong, S. Y.; Hwang, Y.; Lee, M.; Chang, S. Acc. Chem. Res. 2021, 54, 2683. |
[11] | (e) Wu, L.-Y.; Zhong, D.; Liu, W.-B. Chin. J. Org. Chem. 2021, 41, 4083. (in Chinese) |
[11] | (邬林洋, 钟大猷, 刘文博, 有机化学, 2021, 41, 4083.) |
[12] | (a) Ng, K.-H.; Chan, A. S. C.; Yu, W.-Y. J. Am. Chem. Soc. 2010, 132, 12862. |
[12] | (b) Grohmann, C.; Wang, H.; Glorius, F. Org. Lett. 2013, 15, 3014. |
[12] | (c) John, A.; Byun, J.; Nicholas, K. M. Chem. Commun. 2013, 49, 10965. |
[12] | (d) Zhou, B.; Du, J.; Yang, Y.; Feng, H.; Li, Y. Org. Lett. 2014, 16, 592. |
[12] | (e) Shi, J.; Zhao, G.; Wang, X.; Xu, H. E.; Yi, W. Org. Biomol. Chem. 2014, 12, 6831. |
[12] | (f) Huh, S.; Hong, S. Y.; Chang, S. Org. Lett. 2019, 21, 2808. |
[12] | (g) Wang, H.; Park, Y.; Bai, Z. Q.; Chang, S.; He, G.; Chen, G. J. Am. Chem. Soc. 2019, 141, 7194. |
[12] | (h) Guo, Q.; Ren, X.; Lu, Z. Org. Lett. 2019, 21, 880. |
[12] | (i) Jung, H.; Keum, H.; Kweon, J.; Chang, S. J. Am. Chem. Soc. 2020, 142, 5811. |
[13] | (a) Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., nt. Ed. 2005, 44, 5188. |
[13] | (b) Clayden, J.; Donnard, M.; Lefranc, J.; Tetlow, D. J. Chem. Commun. 2011, 47, 4624. |
[13] | (c) Zhou, H.; Hong, J.; Huang, J.; Chen, Z. Asian J. Org. Chem. 2017, 6, 817. |
[13] | (d) Li, W. H.; Dong, L. Adv. Synth. Catal. 2018, 360, 1104. |
[13] | (e) Bakhoda, A.; Jiang, Q.; Badiei, Y. M.; Bertke, J. A.; Cundari, T. R.; Warren, T. H. Angew. Chem., nt. Ed. 2019, 58, 3421. |
[13] | (f) Yoshitake, M.; Hayashi, H.; Uchida, T. Org. Lett. 2020, 22, 4021. |
[14] | Wang, H.; Jung, H.; Song, F.; Zhu, S.; Bai, Z.; Chen, D.; He, G.; Chang, S.; Chen, G. Nat. Chem. 2021, 13, 378. |
[15] | Ball, R. G.; Graham, W. A. G.; Heinekey, D. M.; Hoyano, J. K.; McMaster, A. D.; Mattson, B. M.; Michel, S. T. Inorg. Chem. 1990, 29, 2023. |
[16] | Le Grel, P.; Salaün, A.; Mocquet, C.; Le Grel, B.; Roisnel, T.; Potel, M. J. Org. Chem. 2011, 76, 8756. |
[17] | Han, S.; Shin, Y.; Sharma, S.; Mishra, N. K.; Park, J.; Kim, M.; Kim, M.; Jang, J.; Kim, I. S. Org. Lett. 2014, 16, 2494. |
[18] | Zhan, F.; Liang, G. Angew. Chem., nt. Ed. 2013, 52, 1266. |
/
〈 |
|
〉 |