研究论文

铱催化异羟肟酸衍生物参与的分子间N—N键偶联反应合成酰肼

  • 宋方方 ,
  • 朱士阳 ,
  • 王浩 ,
  • 陈弓
展开
  • 南开大学 元素有机化学国家重点实验室 天津 300071

收稿日期: 2021-05-25

  修回日期: 2021-06-22

  网络出版日期: 2021-07-06

基金资助

国家自然科学基金(21725204); 国家自然科学基金(21901127); 中国博士后科学基金(2018M640225); 中国博士后科学基金(2019T120179)

Iridium-Catalyzed Intermolecular N—N Coupling for Hydrazide Synthesis Using N-Benzoyloxycarbamates as Acyl Nitrene Precursor

  • Fangfang Song ,
  • Shiyang Zhu ,
  • Hao Wang ,
  • Gong Chen
Expand
  • State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University, Tianjin 300071
* Corresponding authors. E-mail: ;

Received date: 2021-05-25

  Revised date: 2021-06-22

  Online published: 2021-07-06

Supported by

National Natural Science Foundation of China(21725204); National Natural Science Foundation of China(21901127); China Postdoctoral Science Foundation(2018M640225); China Postdoctoral Science Foundation(2019T120179)

摘要

报道了一类铱催化下异羟肟酸衍生物作为酰基氮宾前体参与的分子间N—N偶联合成酰肼化合物的反应. 与之前报道的二噁唑酮参与的反应不同, 该类氮宾前体不仅可以合成N-酰基肼类化合物, 又可以用于N-氧酰基肼类化合物的合成. 计算化学研究说明分子内氢键辅助N—O键断裂脱酸形成金属酰基氮宾中间体可能是决速步, 随后芳胺在氢键辅助下亲核进攻金属酰基氮宾形成N—N键.

本文引用格式

宋方方 , 朱士阳 , 王浩 , 陈弓 . 铱催化异羟肟酸衍生物参与的分子间N—N键偶联反应合成酰肼[J]. 有机化学, 2021 , 41(10) : 4050 -4058 . DOI: 10.6023/cjoc202105044

Abstract

An iridium-catalyzed intermolecular N—N coupling reaction using various N-benzoyloxyamides as acyl nitrene precursor for hydrazide synthesis has been developed. Unlike the carboxylic acid-derived dioxazolones used in previous report, this type of precursors allows the efficient synthesis of both acyl and oxycarbonyl substituted hydrazines from readily accessible precursors. Computational chemistry studies indicated that formation of the metal-acylnitrenoid intermediates via intramolecular hydrogen bond-assisted N—O cleavage may be the rate-determining step, and the subsequent nucleophilic attack of metal-acylnitrenoid by arylamines may be assisted by Cl…HN hydrogen bond to form the N—N bond.

参考文献

[1]
(a) Ke, S.; Sun, T.; Liang, Y.; Yang, Z. Chin. J. Org. Chem. 2010, 30, 1820. (in Chinese)
[1]
(柯少勇, 孙婷婷, 梁英, 杨自文, 有机化学, 2010, 30, 1820.)
[1]
(b) Blair, L. M.; Sperry, J. J. Nat. Prod. 2013, 76, 794.
[1]
(c) Chen, L.; Deng, Z.; Zhao, C. ACS Chem. Biol. 2021, 16, 559.
[2]
(a) Okuhara, M.; Kuroda, Y.; Goto, T.; Okamoto, M.; Terano, H.; Kohsaka, M.; Aoki, H.; Imanaka, H. J. Antibiot. 1980, 33, 13.
[2]
(b) Ogita, T.; Gunji, S.; Fukazawa, Y.; Terahara, A.; Kinoshita, T.; Nagaki, H.; Beppu, T. Tetrahedron Lett. 1983, 24, 2283.
[2]
(c) Broberg, A.; Menkis, A.; Vasiliauskas, R. J. Nat. Prod. 2006, 69, 97.
[2]
(d) Wang, K.-K. A.; Ng, T. L.; Wang, P.; Huang, Z.; Balskus, E. P.; van der Donk, W. A. Nat. Commun. 2018, 9, 3687.
[3]
Forquet, V.; Sabaté, C. M.; Jacob, G.; Guelou, Y.; Delalu, H.; Darwich, C. Chem.-Asian J. 2015, 10, 1668.
[4]
Diccianni, J. B.; Hu, C.; Diao, T. Angew. Chem.,Int. Ed. 2016, 55, 7534.
[5]
(a) Ragnarsson, U. Chem. Soc. Rev. 2001, 30, 205.
[5]
(b) Wolter, M.; Klapars, A.; Buchwald, S. L. Org. Lett. 2001, 3, 3803.
[6]
(a) Evans, D. A.; Johnson, D. S. Org. Lett. 1999, 1, 595.
[6]
(b) Feng, G.; Wang, X.; Jin, J. Eur. J. Org. Chem. 2019, 6728.
[6]
(c) Chen, J.; Shen, X.; Lu, Z. J. Am. Chem. Soc. 2020, 142, 14455.
[7]
Guo, Q.; Lu, Z. Synthesis 2017, 49, 3835.
[8]
(a) Rosen, B. R.; Werner, E. W.; O'Brien, A. G.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5571.
[8]
(b) Pandit, P.; Yamamoto, K.; Nakamura, T.; Nishimura, K.; Kurashige, Y.; Yanai, T.; Nakamura, G.; Masaoka, S.; Furukawa, K.; Yakiyama, Y.; Kawano, M.; Higashibayashi, S. Chem. Sci. 2015, 6, 4160.
[8]
(c) Ryan, M. C.; Martinelli, J. R.; Stahl, S. S. J. Am. Chem. Soc. 2018, 140, 9074.
[8]
(d) Feng, N.; Hou, Z.; Xu, H. Chin. J. Org. Chem. 2019, 39, 1424. (in Chinese)
[8]
(冯恩祺, 侯中伟, 徐海超, 有机化学, 2019, 39, 1424.)
[8]
(e) Yin, D.; Jin, J. Eur. J. Org. Chem. 2019, 2019, 5646.
[8]
(f) Ryan, M. C.; Kim, Y. J.; Gerken, J. B.; Wang, F.; Aristov, M. M.; Martinelli, J. R.; Stahl, S. S. Chem. Sci. 2020, 11, 1170.
[8]
(g) Vemuri, P. Y.; Patureau, F. W. Org. Lett. 2021, 23, 3902.
[9]
(a) Wallace, R. G. Aldrichim. Acta 1980, 13, 3.
[9]
(b) Vidal, J.; Hannachi, J. C.; Hourdin, G.; Mulatier, J. C.; Collet, A. Tetrahedron Lett. 1998, 39, 8845.
[9]
(c) Kang, C. W.; Sarnowski, M. P.; Elbatrawi, Y. M.; Del Valle, J. R. J. Org. Chem. 2017, 82, 1833.
[9]
(d) Lei, L.; Li, C.; Mo, D. Chin. J. Org. Chem. 2019, 39, 2989. (in Chinese)
[9]
(雷禄, 李承璟, 莫冬亮, 有机化学, 2019, 39, 2989.)
[9]
(e) Zhang, Y.; He, J.; Song, P.; Wang, Y.; Zhu, S. CCS Chem. 2020, 2, 2259.
[10]
(a) Li, J.; Cisar, J. S.; Zhou, C.-Y.; Vera, B.; Williams, H.; Rodríguez, A. D.; Cravatt, B. F.; Romo, D. Nat. Chem. 2013, 5, 510.
[10]
(b) Kono, M.; Harada, S.; Nemoto, T. Chem.-Eur. J. 2019, 25, 3119.
[10]
(c) Maestre, L.; Dorel, R.; Pablo, O.; Escofet, I.; Sameera, W. M. C.; Alvarez, E.; Maseras, F.; Diaz-Requejo, M. M.; Echavarren, A. M.; Perez, P. J. J. Am. Chem. Soc. 2017, 139, 2216.
[10]
(d) Dehghany, M.; Eshon, J.; Roberts, J. M.; Schomaker, J. M. In Silver Catalysis in Organic Synthesis, Vol. 4, Eds.: Li, C.-J.; Bi, X., John Wiley & Sons, Weinheim, 2019, Chapter 8, pp. 439-532.
[11]
(a) Shimbayashi, T.; Sasakura, K.; Eguchi, A.; Okamoto, K.; Ohe, K. Chem.-Eur. J. 2019, 25, 3156.
[11]
(b) van Vliet, K. M.; de Bruin, B. ACS Catal. 2020, 10, 4751.
[11]
(c) Wang, Y.-C.; Lai, X.-J.; Huang, K.; Yadav, S.; Qiu, G.; Zhang, L.; Zhou, H. Org. Chem. Front. 2021, 8, 1677.
[11]
(d) Hong, S. Y.; Hwang, Y.; Lee, M.; Chang, S. Acc. Chem. Res. 2021, 54, 2683.
[11]
(e) Wu, L.-Y.; Zhong, D.; Liu, W.-B. Chin. J. Org. Chem. 2021, 41, 4083. (in Chinese)
[11]
(邬林洋, 钟大猷, 刘文博, 有机化学, 2021, 41, 4083.)
[12]
(a) Ng, K.-H.; Chan, A. S. C.; Yu, W.-Y. J. Am. Chem. Soc. 2010, 132, 12862.
[12]
(b) Grohmann, C.; Wang, H.; Glorius, F. Org. Lett. 2013, 15, 3014.
[12]
(c) John, A.; Byun, J.; Nicholas, K. M. Chem. Commun. 2013, 49, 10965.
[12]
(d) Zhou, B.; Du, J.; Yang, Y.; Feng, H.; Li, Y. Org. Lett. 2014, 16, 592.
[12]
(e) Shi, J.; Zhao, G.; Wang, X.; Xu, H. E.; Yi, W. Org. Biomol. Chem. 2014, 12, 6831.
[12]
(f) Huh, S.; Hong, S. Y.; Chang, S. Org. Lett. 2019, 21, 2808.
[12]
(g) Wang, H.; Park, Y.; Bai, Z. Q.; Chang, S.; He, G.; Chen, G. J. Am. Chem. Soc. 2019, 141, 7194.
[12]
(h) Guo, Q.; Ren, X.; Lu, Z. Org. Lett. 2019, 21, 880.
[12]
(i) Jung, H.; Keum, H.; Kweon, J.; Chang, S. J. Am. Chem. Soc. 2020, 142, 5811.
[13]
(a) Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., nt. Ed. 2005, 44, 5188.
[13]
(b) Clayden, J.; Donnard, M.; Lefranc, J.; Tetlow, D. J. Chem. Commun. 2011, 47, 4624.
[13]
(c) Zhou, H.; Hong, J.; Huang, J.; Chen, Z. Asian J. Org. Chem. 2017, 6, 817.
[13]
(d) Li, W. H.; Dong, L. Adv. Synth. Catal. 2018, 360, 1104.
[13]
(e) Bakhoda, A.; Jiang, Q.; Badiei, Y. M.; Bertke, J. A.; Cundari, T. R.; Warren, T. H. Angew. Chem., nt. Ed. 2019, 58, 3421.
[13]
(f) Yoshitake, M.; Hayashi, H.; Uchida, T. Org. Lett. 2020, 22, 4021.
[14]
Wang, H.; Jung, H.; Song, F.; Zhu, S.; Bai, Z.; Chen, D.; He, G.; Chang, S.; Chen, G. Nat. Chem. 2021, 13, 378.
[15]
Ball, R. G.; Graham, W. A. G.; Heinekey, D. M.; Hoyano, J. K.; McMaster, A. D.; Mattson, B. M.; Michel, S. T. Inorg. Chem. 1990, 29, 2023.
[16]
Le Grel, P.; Salaün, A.; Mocquet, C.; Le Grel, B.; Roisnel, T.; Potel, M. J. Org. Chem. 2011, 76, 8756.
[17]
Han, S.; Shin, Y.; Sharma, S.; Mishra, N. K.; Park, J.; Kim, M.; Kim, M.; Jang, J.; Kim, I. S. Org. Lett. 2014, 16, 2494.
[18]
Zhan, F.; Liang, G. Angew. Chem., nt. Ed. 2013, 52, 1266.
文章导航

/