综述与进展

过渡金属催化CO2氢化反应研究进展

  • 黄文斌 ,
  • 邱丽琪 ,
  • 任方煜 ,
  • 何良年
展开
  • 南开大学化学学院 元素有机化学国家重点实验室 天津 300071

收稿日期: 2021-05-31

  修回日期: 2021-06-19

  网络出版日期: 2021-07-06

基金资助

国家自然科学基金(21975135)

Advances on Transition-Metal Catalyzed CO2 Hydrogenation

  • Wenbin Huang ,
  • Liqi Qiu ,
  • Fangyu Ren ,
  • Liangnian He
Expand
  • State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071
* Corresponding author. E-mail:

Received date: 2021-05-31

  Revised date: 2021-06-19

  Online published: 2021-07-06

Supported by

National Natural Science Foundation of China(21975135)

摘要

二氧化碳(CO2)是主要的温室气体, 由于人类过度使用化石资源导致大气中CO2浓度增加, 进而引发全球环境问题. 另一方面, CO2是一种理想的C1资源, 具有安全、储量丰富和廉价易得等优点. 因此如何将CO2应用于有机合成以获得化工产品与燃料, 已成为当前研究热点. 其中, 过渡金属催化的CO2氢化反应是CO2资源化利用的重要途径, 反应可以在温和条件下选择性地生成2e4e6e还原产物, 如甲酸、甲酰胺、甲酸酯、甲醛、甲醇以及C2+醇等产物, 具有广阔的应用前景, 因此引人注目. 系统总结了近来过渡金属配合物催化CO2加氢反应的研究进展, 主要对催化剂的种类和结构、活性及其产物选择性等进行总结, 并对近来所发展的与CCU (CO2 capture and utilization)策略相关的CO2原位催化氢化反应进行了分析与讨论. 此外, 对本领域中存在的挑战及展望进行了分析.

本文引用格式

黄文斌 , 邱丽琪 , 任方煜 , 何良年 . 过渡金属催化CO2氢化反应研究进展[J]. 有机化学, 2021 , 41(10) : 3914 -3934 . DOI: 10.6023/cjoc202105052

Abstract

Carbon dioxide (CO2) is the main greenhouse gas, the excessive burning of fossil fuels leads to the increasing of CO2 concentration, resulting in global warming. On the other hand, CO2 is regarded as an ideal C1 source due to its nontoxicity, abundance and availability. Hence, the transformation of CO2 into fine chemicals and hydrocarbon fuels in organic synthesis is becoming one of hot research fields. Among them, the transition-metal catalyzed CO2 hydrogenation is an appealing and promising approach for CO2 utilization with wide potential applications, thus leading to selective fromation of 2e, 4e, and 6e reductive products including formic acid, formamide, formate, formaldehyde, methanol and C2+ alcohols under mild reaction conditions. In this review, the recent advances on transition metal complexe-catalyzed CO2 hydrogenation are in detail summarized on the basis of the molecular structures, activities of the homogeneous catalysts, and product selectivity controlling. This review also gives an overview on the in situ catalytic hydrogenation corresponding to the recently developed CCU (CO2 capture and utilization) strategy. Furthermore, the challenges and perspectives in homogeneous catalytic hydrogenation field are also given in this article.

参考文献

[1]
https://www.iea.org/reports/global-energy-co2-statusreport-2019
[2]
Wuebbles, D. J.; Easterling, D. R.; Hayhoe, K.; Knutson, T.; Kopp, R. E.; Kossin, J. P.; Kunkel, K. E.; LeGrande, A. N.; Mears, C.; Sweet, W. V.; Taylor, P. C.; Vose, R. S.; Wehner, M. F. In Climate Science Special Report: Fourth National Climate Assessment, Vol. I, U.S. Global Change Research Program, Washington, DC, 2017, pp. 35-72.
[3]
(a) Zhang, L. L.; Han, Z. B.; Zhang, L.; Li, M. X.; Ding, K. L. Chin. J. Org. Chem. 2016, 36, 1824. (in Chinese)
[3]
(张琳莉, 韩召斌, 张磊, 李明星, 丁奎岭, 有机化学, 2016, 36, 1824.)
[3]
(b) Dong, K. W.; Razzaq, R.; Hu, Y. Y.; Ding, K. L. Top. Curr. Chem. 2017, 375, 23.
[3]
(c) Li, Y.; Wang, Z.; Liu, Q. Chin. J. Org. Chem. 2017, 37, 1978. (in Chinese)
[3]
(李勇, 王征, 刘庆彬, 有机化学, 2017, 37, 1978.)
[3]
(d) Zhang, W. Z.; Zhang, N.; Guo, C. X.; Lu, X. B. Chin. J. Org. Chem. 2017, 37, 1309. (in Chinese)
[3]
(张文珍, 张宁, 郭春晓, 吕小兵, 有机化学, 2017, 37, 1309.)
[3]
(e) Tortajada, A.; Juliá-Hernández, F.; Börjesson, M.; Moragas, T.; Martin, R. Angew. Chem., Int. Ed. 2018, 57, 15948.
[3]
(f) Wang, Q.; Sun, J. Chem. Bull. 2018, 81, 312. (in Chinese)
[3]
(王强, 孙京, 化学通报, 2018, 81, 312.)
[3]
(g) Zhang, Y.; Cen, J.; Xiong, W.; Qi, Z.; Jiang, H. Prog. Chem. 2018, 30, 547. (in Chinese)
[3]
(张宇, 岑竞鹤, 熊文芳, 戚朝荣, 江焕峰, 化学进展, 2018, 30, 547.)
[3]
(h) Wang, S.; Xi, C. Chem. Soc. Rev. 2019, 48, 382.
[3]
(i) Chen, L.; Xie, J. H. Chin. J. Org. Chem. 2020, 40, 247. (in Chinese)
[3]
(程磊, 谢建华, 有机化学, 2020, 40, 247.)
[3]
(j) Ye, J. H.; Ju, T.; Huang, H.; Liao, L. L.; Yu, D. G. Acc. Chem. Res. 2021, 54, 2518.
[3]
(k) Yi, Y. P.; Hang, W.; Xi, C. J. Chin. J. Org. Chem. 2021, 41, 80. (in Chinese)
[3]
(易雅平, 杭炜, 席婵娟, 有机化学, 2021, 41, 80.)
[3]
(o) Zhang, Z.; Gong, L.; Zhou, X. Y.; Yan, S. S.; Li, J.; Yu, D. G. Acta Chim. Sinica 2019, 77, 783. (in Chinese)
[3]
(张振, 龚莉, 周晓渝, 颜思顺, 李静, 余达刚, 化学学报, 2019, 77, 783.)
[3]
(p) Zhou, C.; Li, M.; Yu, J. T.; Sun, S.; Cheng, J. Chin. J. Org. Chem. 2020, 40, 2221. (in Chinese)
[3]
(周聪, 李渺, 于金涛, 孙松, 成江, 有机化学, 2020, 40, 2221.)
[3]
(q) Chen, K. H.; Li, H. R.; He, L. N. Chin. J. Org. Chem. 2020, 40, 2195.
[3]
(陈凯宏, 李红茹, 何良年, 有机化学, 2020, 40, 2195.)
[3]
(r) Guo, X.; Wang, Y. Z.; Chen, J.; Li, G. Q.; Xia, J. B. Chin. J. Org. Chem. 2020, 40, 2208. (in Chinese)
[3]
(郭霄, 王亚洲, 陈洁, 李公强, 夏纪宝, 有机化学, 2020, 40, 2208.)
[4]
Leitner, W. Angew. Chem., Int. Ed. 1995, 34, 2207.
[5]
(a) Boddien, A.; Mellmann, D.; Gärtner, F.; Jackstell, R.; Junge, H.; Dyson, P. J.; Laurenczy, G.; Ludwig, R.; Beller, M. Science 2011, 333, 1733.
[5]
(b) Sordakis, K.; Tang, C. H.; Vogt, L. K.; Junge, H.; Dyson, P. J.; Beller, M.; Laurenczy, G. Chem. Rev. 2018, 118, 372.
[6]
Ding, S. T.; Jiao, N. Angew. Chem., Int. Ed. 2012, 51, 9226.
[7]
Álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Chem. Rev. 2017, 117, 9804.
[8]
Sordakis, K, Tang, C. H.; Vogt, L. K.; Junge, H.; Dyson, P. J.; Beller, M.; Laurenczy, G. Chem. Rev. 2018, 118, 372.
[9]
Farlow, M. W.; Adkins, H. J. Am. Chem. Soc. 1935, 57, 2222.
[10]
Inoue, Y.; Izumida, H.; Sasaki, Y.; Hashimoto, H. Chem. Lett. 1976, 863.
[11]
Jessop, P. G.; Ikariya, T.; Noyori, R. Nature 1994, 368, 231.
[12]
Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1994, 116, 8851.
[13]
Kröcher, O.; Köppel, R. A.; Baiker, A. Chem. Commun. 1997, 453.
[14]
Munshi, P.; Main, A. D.; Linehan, J. C.; Tai, C. C.; Jessop, P. G. J. Am. Chem. Soc. 2002, 124, 7963.
[15]
Himeda, Y.; Onozawa-Komatsuzaki, N.; Sugihara, H.; Arakawa, H.; Kasuga, K. Organometallics 2004, 23, 1480.
[16]
Federsel, C.; Jackstell, R.; Boddien, A.; Laurenczy, G.; Beller, M. ChemSusChem 2010, 3, 1048.
[17]
Sanz, S.; Azua, A.; Peris, E. Dalton Trans. 2010, 39, 6339.
[18]
Liu, Q.; Wu, L.; Gulak, S.; Rockstroh, N.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2014, 53, 7085.
[19]
Kothandaraman, J.; Czaun, M.; Goeppert, A.; Haiges, R.; Jones, J. P.; May, R. B.; Prakash, G. K. S.; Olah, G. A. ChemSusChem 2015, 8, 1442.
[20]
Huff, C. A.; Sanford, M. S. ACS Catal. 2013, 3, 2412.
[21]
Zhang, L.; Han, Z.; Zhao, X.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2015, 54, 6186.
[22]
Rohmann, K.; Kothe, J.; Haenel, M. W.; Englert, U.; Hölscher, M.; Leitner, W. Angew. Chem., Int. Ed. 2016, 55, 8966.
[23]
Weilhard, A.; Qadir, M. I. Sans, V. Dupont, J. ACS Catal. 2018, 8, 1628.
[24]
Zhang, F. H.; Liu, C.; Li, W.; Tian, G. L.; Xie, J. H.; Zhou, Q. L. Chin. J. Chem. 2018, 36, 1000.
[25]
Westhues, N.; Belleflamme, M.; Klankermayer, J. ChemCatChem 2019, 11, 5269.
[26]
Malaza, S. S. P.; Makhubela, B. C. E. Journal of CO2 Utilization 2020, 39, 101149.
[27]
Tsai, J. C.; Nicholas, K.M. J. Am. Chem. Soc. 1992, 114, 5117.
[28]
Hutschka, F.; Dedieu, A.; Eichberger, M.; Fornika, R.; Leitner, W. J. Am. Chem. Soc. 1997, 119, 4432.
[29]
Zhang, J. J.; Qian, Q. L.; Wang, Y.; Bediako, B. B.; Cui, M.; Yang, G. Y.; Han, B. X. Green Chem. 2019, 21, 233.
[30]
Laureanti, J. A.; Buchko, G. W.; Katipamula, S.; Su, Q.; Linehan, J. C.; Zadvornyy, O. A.; Peters, J. W.; O'Hagan, M. ACS Catal. 2019, 9, 620.
[31]
Gassner, F.; Leitner, W. J. Chem. Soc., Chem. Commun. 1993, 1465.
[32]
Ezhova, N. N.; Kolesnichenko, N. V.; Bulygin, A. V.; Slivinskii, E. V.; Han, S. Russ. Chem. Bull. 2002, 51, 2165.
[33]
Li, Y. N.; He, L. N.; Liu, A. H.; Lang, X. D.; Yang, Z. Z.; Yu, B.; Luan, C. R. Green Chem. 2013, 15, 2825.
[34]
Himeda, Y.; Onozawa-Komatsuzaki, N.; Sugihara, H.; Arakawa, H.; Kasuga, K. Organometallics 2004, 23, 1480.
[35]
Himeda, Y.; Onozawa-Komatsuzaki, N.; Sugihara, H.; Kasuga, K. Organometallics 2007, 26, 702.
[36]
Ogo, S.; Kabe, R; Hayashi, H.; Harada, R.; Fukuzumi, S. Dalton Trans. 2006, 4657.
[37]
Tanaka, R.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14168.
[38]
Schmeier, T. J.; Dobereiner, G. E.; Crabtree, R. H.; Hazari, N. J. Am. Chem. Soc. 2011, 133, 9274.
[39]
Azua, A.; Sanz, S.; Peris, E. Chem.-Eur. J. 2011, 17, 3963.
[40]
Liu, C.; Xie, J. H.; Tian, G. L.; Li, W.; Zhou, Q. L. Chem. Sci. 2015, 6, 2928.
[41]
Fidalgo, J.; Ruiz-Castañeda, M.; García-Herbosa, G.; Carbayo, A.; Jalόn, F. A.; Rodríguez, A. M.; Manzano, B. R.; Espino, G. Inorg. Chem. 2018, 57, 14186.
[42]
Kanega, R.; Ertem, M. Z.; Onishi, N.; Szalda, D. J.; Fujita, E. Organometallics 2020, 39, 1519.
[43]
Hull, J. F.; Himeda, Y.; Wang, W. H.; Hashiguchi, B.; Periana, R.; Szalda, D. J.; Muckerman, J. T.; Fujita, E. Nat. Chem. 2012, 4, 383.
[44]
Lu, S. M.; Wang, Z.; Li, J.; Xiao, J.; Li, C. Green Chem. 2016, 18, 4553.
[45]
Evans, G. O.; Newell, C. J. Inorg. Chim. Acta 1978, 31, L387.
[46]
Tai, C. C.; Chang, T.; Roller, B.; Jessop, P. G. Inorg. Chem. 2003, 42, 7340.
[47]
Federsel, C.; Boddien, A.; Jackstell, R.; Jennerjahn, R.; Dyson, P. J.; Scopelliti, R.; Laurenczy, G.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 9777.
[48]
Ziebart, C.; Federsel, C.; Anbarasan, P.; Jackstell, R.; Baumann, W.; Spannenberg, A.; Beller, M. J. Am. Chem. Soc. 2012, 134, 20701.
[49]
Montandon-Clerc, M.; Laurenczy, G. J. Catal. 2018, 362, 78.
[50]
Bertini, F.; Gorgas, N.; Sto?ger, B.; Peruzzini, M.; Veiros, L. F.; Kirchner, K.; Gonsalvi, L. ACS Catal. 2016, 6, 2889.
[51]
Jayarathne, U.; Hazari, N.; Bernskoetter, W. H. ACS Catal. 2018, 8, 1338.
[52]
(a) Liu, W. P.; Sahoo, B.; Junge, K.; Beller, M. Acc. Chem. Res. 2018, 51, 1858.
[52]
(b) Federsel, C.; Ziebart, C.; Jackstell, R.; Baumann, W.; Beller, M. Chem.-Eur. J. 2012, 18, 72.
[53]
Tai, C. C.; Chang, T.; Roller, B.; Jessop, P. G. Inorg. Chem. 2003, 42, 7340.
[54]
Affan, M. A.; Jessop, P. G. Inorg. Chem. 2017, 56, 7301.
[55]
Affan, M. A.; Schatte, G.; Jessop, P. G. Inorg. Chem. 2020, 59, 14275.
[56]
Watari, R.; Kayaki, Y.; Hirano, S.; Matsumoto, N.; Ikariya, T. Adv. Synth. Catal. 2015, 357, 1369.
[57]
Zall, C. M.; Linehan, J. C.; Appel, A. M. ACS Catal. 2015, 5, 5301.
[58]
Li, R. P.; Zhao, Y. F.; Li, Z. Y.; Wu, Y. Y.; Wang, J. J.; Liu, Z. M. Sci. China Chem. 2019, 62, 256.
[59]
(a) Du, C. Y.; Chen, Y. F. Acta Chim. Sinica 2020, 78, 938. (in Chinese)
[59]
(杜重阳, 陈耀峰, 化学学报, 2020, 78, 938.)
[59]
(b) Du, C. Y.; Chen, Y. F. Chin. J. Chem. 2020, 38, 1057.
[60]
Langer, R.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 9948.
[61]
Zhang, Y.; MacIntosh, A. D.; Wong, J. L.; Bielinski, E. A.; Williard, P. G.; Mercado, B. Q.; Hazari, N.; Bernskoetter, W. H. Chem. Sci. 2015, 6, 4291.
[62]
Bertini, F.; Mellone, I.; Ienco, A.; Peruzzini, M.; Gonsalvi, L. ACS Catal. 2015, 5, 1254.
[63]
Zhu, F.; Zhu-Ge, L.; Yang, G.; Zhou, S. ChemSusChem 2015, 8, 609.
[64]
Federsel, C.; Ziebart, C.; Jackstell, R.; Baumann, W.; Beller, M. Chem.-Eur. J. 2012, 18, 72.
[65]
Jeletic, M. S.; Mock, M. T.; Appel, A. M.; Linehan, J. C. J. Am. Chem. Soc. 2013, 135, 11533.
[66]
Badiei, Y. M.; Wang, W.-H.; Hull, J. F.; Szalda, D. J.; Muckerman, J. T.; Himeda, Y.; Fujita, E. Inorg. Chem. 2013, 52, 12576.
[67]
Spentzos, A. Z.; Barnes, C. L.; Bernskoetter, W. H. Inorg. Chem. 2016, 55, 8225.
[68]
Enthaler, S.; Bruck, A.; Kammer, A.; Junge, H.; Irran, E.; Gulak, S. ChemCatChem 2015, 7, 65.
[69]
Zhang, Y. Y.; Williard, P. G.; Bernskoetter, W. H. Organometallics 2016, 35, 860.
[70]
Reuss, G.; Disteldorf, W.; Gamer, A. O.; Hilt, A. In UllmannÏs Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000.
[71]
Bontemps, S.; Vendier, L.; Sabo-Etienne, S. J. Am. Chem. Soc. 2014, 136, 4419.
[72]
Ren, X. Y.; Zheng, Z. Y.; Zhang, L.; Wang, Z.; Xia, C. G.; Ding, K. L. Angew. Chem. 2017, 129, 316.
[73]
Hua, K. M.; Liu, X. F.; Wei, B. Y.; Shao, Z. L.; Deng, Y. C.; Zhong, L. S.; Wang, H.; Sun, Y. H. Green Chem. 2021, DOI: 10.1039/d0gc03913f.
[74]
(a) Arpe, H. J. Industrial Organic Chemistry, Vol. 5, Wiley-VCH, Weinheim, 2010.
[74]
(b) Bertau, M.; Offermanns, H.; Plass, L.; Schmidt, F.; Wernicke, H. J. Methanol: The Basic Chemical and Energy Feedstock of the Future, Springer, Amsterdam, 2013.
[74]
(c) Baerns, M.; Behr, A.; Brehm, A.; Gmehling, J.; Hofmann, H.; Onken, U.; Renken, A. Technische Chemie, Wiley-VCH, Weinheim, 2006.
[75]
(a) Gaikwad, R.; Bansode, A.; Urakawa, A. J. Catal. 2016, 343, 127.
[75]
(b) Xie, S.; Zhang, W.; Lan, X.; Lin, H. ChemSusChem 2020, 13, 6141.
[76]
Jessop, P. G. In The Handbook of Homogeneous Hydrogenation, Eds.: de Vries, J. G.; Elsevier, C. J., Wiley-VCH, Weinheim, 2007, p. 489.
[77]
(a) Tominaga, K. I.; Sasaki, Y.; Kawai, M.; Watanabe, T.; Saito, M. J. Chem. Soc. Chem. Commun. 1993, 629.
[77]
(b) Tominaga, K. i.; Sasaki, Y.; Watanabe, T.; Saito, M. Bull. Chem. Soc. Jpn. 1995, 68, 2837.
[78]
(a) Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Nat. Chem. 2011, 3, 609.
[78]
(b) Balaraman, E.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 11702.
[78]
(c) Balaraman, E.; Gnanaprakasam, B.; Shimon, L. J. W.; Milstein, D. J. Am. Chem. Soc. 2010, 132, 16756.
[79]
Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18122.
[80]
Rezayee, N. M.; Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2015, 137, 1028.
[81]
Wesselbaum, S.; Stein, T. v.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2012, 51, 7499.
[82]
Khusnutdinova, J. R.; Garg, J. A.; Milstein, D. ACS Catal. 2015, 5, 2416.
[83]
Qian, Q. L.; Cui, M.; He, Z. H.; Wu, C. Y.; Zhu, Q. G.; Zhang, Z. F.; Ma, J.; Yang, G. Y.; Zhang, J. J.; Han, B. X. Chem. Sci. 2015, 6, 5685.
[84]
Thenert, K.; Beydoun, K.; Wiesenthal, J.; Leitner, W.; Klankermayer, J. Angew. Chem., Int. Ed. 2016, 55, 12266.
[85]
Wang, Z.; Zhao, Z. W.; Li, Y.; Zhong, Y. X.; Zhang, Q. Y.; Liu, Q. B.; Solan, G. A.; Ma, Y. P.; Sun, W. H. Chem. Sci. 2020, 11, 6766.
[86]
Schieweck, B. G.; Jurling-Will, P.; Klankermayer, J. ACS Catal. 2020, 10, 3890.
[87]
Ribeiro, A. P. C.; L. Martins, M. D. R. S.; Pombeiro, A. J. L. Green Chem. 2017, 19, 4811.
[88]
Lane, E. M.; Zhang, Y.; Hazari, N.; Bernskoetter, W. H. Organometallics 2019, 38, 3084.
[89]
(a) Gui, Y. Y.; Hu, N. F.; Chen, X. W.; Liao, L. L.; Ju, T.; Ye, J. H.; Zhang, Z.; Li, J.; Yu, D. G. J. Am. Chem. Soc. 2017, 139, 17011.
[89]
(b) Qiu, J.; Gao, S.; Li, C. P.; Zhang, L.; Wang, Z.; Wang, X. M.; Ding, K. L. Chem.-Eur. J. 2019, 25, 13874.
[89]
(c) Chen, X. W.; Zhu, L.; Gui, Y. Y.; Jing, K.; Jiang, Y. X.; Bo, Z. Y.; Lan, Y.; Li, J.; Yu, D. G. J. Am. Chem. Soc. 2019, 141, 18825.
[89]
(d) Wang, M. Y.; Jin, X.; Wang, X. F.; Xia, S. M.; Wang, Y.; Huang, S. Y.; Li, Y.; He, L. N.; Ma, X. B. Angew. Chem., Int. Ed. 2021, 60, 3984.
[90]
(a) Bara, J. E.; Carlisle, T. K.; Gabriel, C. J.; Camper, D.; Finotello, A.; Gin, D. L.; Noble, R. D. Ind. Eng. Chem. Res. 2009, 48, 2739.
[90]
(b) Wang, C. M.; Luo, H. M.; Jiang, D. E.; Li, H. R.; Dai, S. Angew. Chem., Int. Ed. 2010, 49, 5978.
[91]
(a) Li, Y. N.; He, L. N.; Liu, A. H.; Lang, X. D.; Yang, Z. Z.; Yu, B.; Luan, C. R. Green Chem. 2013, 15, 2825.
[91]
(b) Yang, Z. Z.; He, L. N.; Gao, J.; Liu, A. H.; Yu, B. Energy Environ. Sci. 2012, 5, 6602.
[91]
(c) Kar, S.; Goeppert, A.; Surya Prakash, G. K. Acc. Chem. Res. 2019, 52, 2892.
[92]
(a) Yang, Z. Z.; Zhao, Y. N.; He, L. N. RSC Adv. 2011, 1, 545.
[92]
(b) Yang, Z. Z.; He, L. N.; Zhao, Y. N.; Li, B.; Yu, B. Energy Environ. Sci. 2011, 4, 3971.
[93]
(a) Su, J.; Lu, M.; Lin, H. Green Chem. 2015, 17, 2769.
[93]
(b) Moret, S.; Dyson, P. J.; Laurenczy, G. Nat. Commun. 2014, 5, 4017.
[93]
(c) Schuchmann, K.; Mu?ller, V. Science 2013, 342, 1382.
[93]
(d) Wang, W. H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. Chem. Rev. 2015, 115, 12936.
[93]
(e) Zhao, T.; Hu, X.; Wu, Y.; Zhang, Z. Angew. Chem., Int. Ed. 2019, 58, 722.
[93]
(f) Scott, M.; Blas Molinos, B.; Westhues, C.; Franciò, G.; Leitner, W. ChemSusChem 2017, 10, 1085.
[94]
Li, Y. N.; He, L. N.; Liu, A. H.; Lang, X. D.; Yang, Z. Z.; Yu, B.; Luan, C. R. Green Chem. 2013, 15, 2825.
[95]
Zhang, S.; Li, Y. N.; Zhang, Y. W.; He, L. N.; Yu, B.; Song, Q. W.; Lang, X. D. ChemSusChem 2014, 7, 1484.
[96]
Li, Y.-N.; He, L.-N.; Lang, X.-D.; Liu, X.-F.; Zhang, S. RSC Adv. 2014, 4, 49995.
[97]
McNamara, N. D.; Hicks, J. C. ChemSusChem 2014, 7, 1114.
[98]
Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Surya Prakash, G. K. Green Chem. 2016, 18, 5831.
[99]
Guan, C.; Pan, Y.; Ang, E. P. L.; Hu, J.; Yao, C.; Huang, M. H.; Li, H.; Lai, Z.; Huang, K. W. Green Chem. 2018, 20, 4201.
[100]
Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Surya Prakash, G. K. J. Am. Chem. Soc. 2016, 138, 778.
[101]
(a) Boddien, A.; Ga?rtner, F.; Federsel, C.; Sponholz, P.; Mellmann, D.; Jackstell, R.; Junge, H.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 6411.
[101]
(b) Langer, R.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 9948.
[101]
(c) Kothandaraman, J.; Czaun, M.; Goeppert, A.; Haiges, R.; Jones, J. P.; May, R. B.; Surya Prakash, G. K.; Olah, G. A. ChemSusChem 2015, 8, 1442.
[101]
(d) Dai, Z.; Luo, Q.; Cong, H.; Zhang, J.; Peng, T. New J. Chem. 2017, 41, 3055.
[101]
(e) Bertini, F.; Mellone, I.; Ienco, A.; Peruzzini, M.; Gonsalvi, L. ACS Catal. 2015, 5, 1254.
[102]
Kar, S.; Goeppert, A.; Galvan, V.; Chowdhury, R.; Olah, J.; Surya Prakash, G. K. J. Am. Chem. Soc. 2018, 140, 16873.
[103]
Li, Y. N.; Liu, X. F.; He, L. N. J. CO2 Util. 2019, 29, 74.
[104]
Han, Z. B.; Rong, L.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. L. Angew. Chem., Int. Ed. 2012, 51, 13041.
[105]
(a) The omega process (the only advanced mono EG process) is a process in which ethylene oxide is reacted with CO2 to first afford ethylene carbonate, followed by catalytic hydrolysis of the carbonate to selectively produce mono EG, which is an important component of automotive antifreeze and a key precursor to polyester, with global demands of over 25 million metric tons in 2010. The prices of ethylene epoxide, CO2, and EG are 1600, 50, and 1300 US$/metric ton, respectively.
[105]
(b) Ma, J.; Sun, N.; Zhang, X.; Zhao, N.; Mao, F.; Wei, W.; Sun, Y. Catal. Today 2009, 148, 221.
[106]
Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Nat. Chem. 2011, 3, 609.
[107]
Kar, S.; Goeppert, A.; Kothandaraman, J.; Prakash, G. K. S. ACS Catal. 2017, 7, 6347.
[108]
Schneidewind, J.; Adam, R.; Baumann, W.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2017, 56, 1890.
文章导航

/