苯基吡咯类杀菌剂的设计合成及三维-定量构效关系(3D-QSAR)研究
收稿日期: 2021-03-24
修回日期: 2021-06-14
网络出版日期: 2021-07-13
基金资助
国家重点研发计划(2017YFD0300405); 黑龙江省自然科学基金(LH2019C055); 黑龙江省自然科学基金(LH2019C056); 中国博士后科学基金(2019M651316); 黑龙江省博士后科学基金(LBH-Z18261); 黑龙江省省属高校基本科研(2020-KYYWF-1029); 黑龙江省省属高校基本科研(2020-KYYWF-1030); 黑龙江省省属高校基本科研(2020-KYYWF-1031); 黑龙江省省属高校基本科研(135409216); 黑龙江大学研究生创新科研重点(YJSCX2020-080HLJU)
Synthesis, Design and Three-Dimensional Quantitative Structure Activity Relationship (3D-QSAR) Research of Phenylpyrrole Fungicides
Received date: 2021-03-24
Revised date: 2021-06-14
Online published: 2021-07-13
Supported by
National Key Research and Development Program of China(2017YFD0300405); Natural Science Foundation of Heilongjiang Province(LH2019C055); Natural Science Foundation of Heilongjiang Province(LH2019C056); Project Funded by China Postdoctoral Science Foundation(2019M651316); Heilongjiang Provincial Postdoctoral Science Foundation(LBH-Z18261); Department of Education of Heilongjiang Province(2020-KYYWF-1029); Department of Education of Heilongjiang Province(2020-KYYWF-1030); Department of Education of Heilongjiang Province(2020-KYYWF-1031); Department of Education of Heilongjiang Province(135409216); Heilongjiang University Graduate Innovative Research Fund Project(YJSCX2020-080HLJU)
为寻找新型吡咯类农药, 基于杀菌剂氟咯菌腈设计合成了21个苯基吡咯类化合物, 在吡咯环上引入甲基基团, 其目的是探究N位取代基对该类化合物活性的影响. 通过1H NMR、FTIR、单晶X射线衍射、高分辨质谱、元素分析和熔点测定等对目标化合物结构进行了表征与确认, 并通过挥发法培养得到16个目标化合物的单晶结构. 5种病原菌抑菌活性测试结果显示: 在10 mg/L浓度条件下, 4-(2-氯苯基)-1H-吡咯-3-腈(4b), 4-(2-溴苯基)-1H-吡咯-3-腈(4c), 4-(2-(三氟甲基)苯基)-1H-吡咯-3-腈(4d), 4-(2-氯-3-氟苯基)-1H-吡咯-3-腈(4g), 4-(2,3-二氯苯基)-1H-吡咯-3-腈(4h)对4种病菌表现出较好甚至高于阳性对照的抑菌效果, 其中化合物4g在1 mg/L浓度条件下对3种病菌的抑制效果仍达到80%以上, 而氮位甲基取代的目标化合物对水稻纹枯病菌表现出专一的抑菌活性. 为了开发出更有效的抗水稻纹枯病菌化合物, 采用比较分子力场分析(CoMFA)方法对20个化合物的水稻纹枯病菌活性进行初步的三维-定量构效关系(3D-QSAR)研究, 建立了一个有效的CoMFA模型(q2=0.503, r2=0.974), 展现了良好的预测能力, 为后续该系列化合物的进一步优化提供了理论支持.
关键词: 吡咯类化合物; 杀菌剂; 氮位取代; 生物活性; 三维-定量构效关系(3D-QSAR)
徐洪亮 , 苏静 , 王子时 , 侯晨忻 , 吴鹏冲 , 邢月 , 李香帅 , 朱晓磊 , 路运才 , 徐利剑 . 苯基吡咯类杀菌剂的设计合成及三维-定量构效关系(3D-QSAR)研究[J]. 有机化学, 2021 , 41(9) : 3560 -3570 . DOI: 10.6023/cjoc202102019
Abstract In order to find new pyrrole pesticides, twenty one new pyrrole compounds based on the structure of fludioxonil were designed and synthesized. And a methyl group was introduced into the pyrrole ring to explore the effect of N-position substituent on the activity. All the structures of target products and intermediates were characterized and confirmed by 1H NMR, FTIR, and single crystal X-ray diffraction, HRMS, elemental analysis and melting point determination. The single crystals of sixteen final products were obtained by volatilizing at room temperature. The antibacterial activity test results on the five pathogens show that under the concentration of 10 mg/L, 4-(2-chlorophenyl)-1H-pyrrole-3-carbonitrile (4b), 4-(2-bromopheny)-1H-pyrrole-3-carbonitrile (4c), 4-(2-(trifluoromethyl)phenyl)-1H-pyrrole-3-carbonitrile (4d), 4-(2-chloro-3-fluorophenyl)-1H-pyrrole-3-carbonitrile (4g), and 4-(2,3-dichlorophenyl)-1H-pyrrole-3-carbonitrile (4h) showed even better or higher antibacterial effect on the four pathogens, the inhibitory effect of compound 4g on the three pathogens at a concentration of 1 mg/L also reached more than 80%. The target compounds substituted with methyl at the nitrogen position showed specific antibacterial activity against Rhizoctonia solani. In order to develop more effective antifungal compounds against Rhizoctonia solani, the three-dimensional quantitative structure activity relationship (3D-QSAR) study on the activity of 20 compounds against Rhizoctonia solani was preliminary conducted using comparative molecular force field analysis (CoMFA). A CoMFA model (q2=0.503, r2=0.974) was established, which showed good predictive ability, and also provided theoretical support for the further optimization of this series of compounds.
[1] | Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257. |
[2] | Sony, M. M. S.; Ponnuswamy, M. N. Cryst. Growth Des. 2006, 6, 736. |
[3] | Chen, X.-T.; Chen, J.; Ke, J.-J.; Zhang, K.; Wu, P.-P.; Wang, S.-H. Chin. J. Org. Chem. 2021, 41, 206. (in Chinese). |
[3] | ( 陈学涛, 陈洁, 柯俊杰, 张焜, 吴盼盼, 王少华, 有机化学, 2021, 41, 206.) |
[4] | Bulumulla, C.; Gunawardhana, R.; Gamage, P. L.; Miller, J. T.; Kularatne, R. N.; Biewer, M. C.; Stefan, M. C. ACS Appl. Mater. Inter. 2020, 12, 32209. |
[5] | Petri, G. L.; Spanò, V.; Spatola, R.; Holl, R.; Raimondi, M. V.; Barraja, P.; Montalbano, A. Eur. J. Med. Chem. 2020, 202, 112783. |
[6] | Xu, S.-C.; Jiang, M.-G. Chin. J. Pestic. Sci. 2002, 4, 2. (in Chinese). |
[6] | ( 徐尚成, 蒋木庚, 农药学学报, 2002, 4, 2.) |
[7] | Han, F.-G.; Lu, Y.; Ji, X.-M.; Zhao, M.-Q.; Zhang, X.-Y.; Liu, Y. Chin. J. Org. Chem. 2010, 30, 1080. (in Chinese). |
[7] | ( 韩富根, 卢叶, 姬小明, 赵铭钦, 张晓蕴, 刘云, 有机化学, 2010, 30, 1080.) |
[8] | Wang, M.-Z.; Xu, H.; Feng, Q.; Wang, L.-Z.; Wang, S.-H.; Li, Z.-M. J. Agric. Food Chem. 2009, 57, 7912. |
[9] | Yang, Y.-Z.; Jiao, B.-N. Modern Agrochem. 2007, 6, 5. (in Chinese). |
[9] | ( 杨玉柱, 焦必宁, 现代农药, 2009, 6, 5.) |
[10] | Li, C.; Liao, D.-H.; Zeng, Z.-W.; Wang, M.-J.; Wu, Z.-X.; Yang, F.; Shi, W.-J. Modern Agrochem. 2009, 8, 3. (in Chinese). |
[10] | ( 李超, 廖道华, 曾仲武, 王美娟, 吴忠信, 杨芳, 师文娟, 现代农药, 2009, 8, 3.) |
[11] | Zhao, Y.-H.; Wang, Q.-H.; Wang, Y.; Zhang, Z.-Q; Wei, Y.; Liu, F.; Zhou, C.-G.; Mu, W. J. Agric. Food Chem. 2017, 65, 5908. |
[12] | Cheng, Y.-N.; Xie, G.-Y.; Sun, S.-J.; You, X.-F. Agrochemicals 2010, 49, 8. (in Chinese). |
[12] | ( 程绎南, 谢桂英, 孙淑君, 游秀峰, 农药, 2010, 49, 8.) |
[13] | Tseng, C. K.; Gless Jr, R. D. J. Org. Chem. 1983, 48, 3566. |
[14] | Zhang, M.-J.; Chen, S.-J.; Weng, Z.-Q. Org. Lett. 2018, 20, 481. |
[15] | Nosachev, S. B.; Tyrkova, E. A.; Tyrkov. A. G. Russ. J. Org. Chem. 2009, 45, 624. |
[16] | Wang, Z.-S.; Ye, H.-T.; Xiao, D.; Ma, D.-S.; Gao, J.-S.; Yu, Y.-H.; Hou, G.-F.; Yan, P.-F. Chin. J. Org. Chem. 2014, 34, 2057. (in Chinese). |
[16] | ( 王子时, 叶汉韬, 肖丹, 马东升, 高金胜, 于颖慧, 侯广峰, 闫鹏飞, 有机化学, 2014, 34, 2057.) |
[17] | Wu, Q.; J, J.; Liu, C.-L.; Yang, J.-C. Agrochemicals 2012, 51, 4. (in Chinese). |
[17] | ( 吴峤, 焦姣, 刘长令, 杨吉春, 农药, 2012, 51, 4.) |
[18] | Wu, C.-C.; Yu, X.-B.; Wang, B.-L.; Liu, J.-B.; Meng, F.-F.; Zhao, Y.-Y.; Xiong, L.-X.; Yang, N.; Li, Y.-X.; Li, Z. M. J. Agric. Food Chem. 2020, 68, 9319. |
[19] | Yao, T.-T. Ph.D. Dissertation, Zhejiang University, Hangzhou, 2017. (in Chinese). |
[19] | ( 姚婷婷, 博士论文, 浙江大学, 杭州, 2017.) |
[20] | Li, Y.; Zhang, H.-Q.; Liu, J.; Yang, X.-P.; Liu, Z.-J. J. Agric. Food Chem. 2006, 54, 3636. |
[21] | Chen, Q.-Q.; Huggins, M.-T.; Lightner, D.-A.; Norona, W.; McDonagh, A.-F. J. Am. Chem. Soc. 1999, 121, 9253. |
[22] | Santo, R. D.; Tafi, A.; Costi, R.; Botta, M.; Artico, M.; Corelli, F.; Forte, M.; Caporuscio, F.; Angiolella, L.; Palamare, A. T. J. Med. Chem. 2005, 48, 5140. |
[23] | Zhu, R.; Xing, L.-X.; Liu, Y.-T.; Deng, F.-K.; Wang, X.-Y.; Hu, Y.-F. J. Org. Chem. 2008, 693, 3897. |
[24] | Yu, Y.-P.; Duan, W.-G.; Lin, G.-S.; Kang, G.-Q.; Wang, X.-Y.; Lei, F.-H. Chin. J. Org. Chem. 2020, 40, 1647. (in Chinese). |
[24] | ( 虞友培, 段文贵, 林桂汕, 康国强, 王晓宇, 雷福厚, 有机化学, 2020, 40, 1647.) |
[25] | Yan, Y.-L.; Li, Y.; Zhang, S.-W.; Ai, C.-Z. J. Mol. Graph. Model. 2011, 29, 747. |
[26] | Zeng, G.-H.; Fang, D.-Q.; Wu, W.-J.; Zhang, R.; Xie, W.-G.; Wu, J.-H.; Shen, Y. Int. J. Quantum. Chem. 2013, 113, 1467. |
[27] | Rupanwar, B. D.; Chavan, S. S.; Shelke, A. M.; Suryavanshi, G. M. New J. Chem. 2018, 42, 6433. |
[28] | Silver, R. F.; Kerr, K. A.; Frandsen, P. D.; Kelley, S. J.; Holmes, H. L. Can. J. Chem. 1967, 45, 1001. |
[29] | Wang, D.-Y.; Xi, G.-H.; Ma, J.-J.; Wang, C.; Zhang, X.-C.; Wang, Q.-Q. Synth. Commun. 2011, 41, 3060. |
[30] | Bezgin, D. A.; Ershov, O. V.; Ievlev, M. Y.; Belikov, M. Y.; Bardasov, I. N. Russ. J. Org. Chem. 2018, 54, 1100. |
[31] | Van Leusen, D.; Van Echten, E.; M. Van Leusen, A. J. Org. Chem. 1992, 57, 2245. |
[32] | Prasad, P. V.; Shanker, M.; Venkanna, A.; Swamy, M. K.; Gopichand, K.; Rao, P. V. Synth. Commun. 2018, 48, 1040. |
[33] | Yao, T.-T.; Xiao, D.-X.; Li, Z.-S.; Cheng, J.-L.; Fang, S.-W.; Du, Y.-J.; Zhao, J.-H.; Dong, X.-W.; Zhu, G.-N. J. Agric. Food. Chem. 2017, 65, 5397. |
[34] | Huang, S.-S.; Ren, Y.-J.; Peng, X.-X.; Qian, P.-P.; Meng, L.-W. Eur. J. Pharm. Sci. 2019, 137, 104965. |
/
〈 |
|
〉 |