综述与进展

有机膦氧化还原催化反应研究进展

  • 蔡卫 ,
  • 黄有
展开
  • 南开大学化学学院 元素有机化学国家重点实验室 天津 300071

收稿日期: 2021-06-02

  修回日期: 2021-07-01

  网络出版日期: 2021-07-13

基金资助

国家自然科学基金(21871148); 国家自然科学基金(21672109)

Advances in Organophosphorus Redox Catalysis

  • Wei Cai ,
  • You Huang
Expand
  • State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071
* Corresponding author. E-mail:

Received date: 2021-06-02

  Revised date: 2021-07-01

  Online published: 2021-07-13

Supported by

National Natural Science Foundation of China(21871148); National Natural Science Foundation of China(21672109)

摘要

有机膦试剂在有机合成中占据非常重要的地位, 有机膦化合物介导的Wittig反应、Staudinger反应、Appel反应、Mitsunobu反应发展至今在科学研究和工业生产等方面意义重大. 近年来关于P(III)/P(V)氧化还原循环体系、催化剂的设计, 实现这些反应的催化模式, 避免计量R3P=O副产物的产生的研究快速发展. 本综述从各个反应出发, 依次介绍这些反应的催化过程的研究进展, 对涉及计量R3P=O副产物的反应未来可能的发展方向进行了展望.

本文引用格式

蔡卫 , 黄有 . 有机膦氧化还原催化反应研究进展[J]. 有机化学, 2021 , 41(10) : 3903 -3913 . DOI: 10.6023/cjoc202106004

Abstract

Organophosphorus reagents play very important role in organic synthesis. The development of Wittig reaction, Staudinger reaction, Appel reaction and Mitsunobu reaction mediated by phosphine compounds is of great significance in scientific research and industrial production. In recent decades, the research on the design of P(III)/P(V) redox catalysis and catalysts to realize the catalytic mode of these reactions, and avoiding the production of stoichiometric R3P=O has developed rapidly. This review introduces the research progress of the catalytic process of each reaction in turn. The future research direction in this field about the reactions involving stoichiometric R3P=O is prospected.

参考文献

[1]
Wittig, G.; Schollkopf, U. Chem. Ber. 1954, 87, 1318.
[2]
Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635.
[3]
Appel, R. Angew. Chem., Int. Ed. 1975, 14, 801.
[4]
Mitsunobu, O.; Yamada, M. Bull. Chem. Soc. Jpn. 1967, 40, 2380.
[5]
Denney, D. B.; DiLeone, R. R. J. Am. Chem. Soc. 1962, 84, 4737.
[6]
Denney, D. B.; Jones, D. H. J. Am. Chem. Soc. 1969, 91, 5821.
[7]
Bartlett, P. D.; Baumstark, A. L.; Landis, M. E. J. Am. Chem. Soc. 1973, 95, 6486.
[8]
Covitz, F.; Westheimer, F. H. J. Am. Chem. Soc. 1963, 85, 1773.
[9]
Naumann, K.; Zon, G.; Mislow, K. J. Am. Chem. Soc. 1969, 91, 7012.
[10]
Bryan, M. C.; Dunn, P. J.; Entwistle, D.; Gallou, F.; Koenig, S. G.; Hayler, J. D.; Hickey, M. R.; Hughes, S.; Kopach, M. E.; Moine, G.; Richardson, P.; Roschangar, F.; Steven, A.; Weiberth, F. J. Green Chem. 2018, 20, 5082.
[11]
He?rault, D.; Nguyen, D. H.; Nuel, D.; Buono, G. Chem. Soc. Rev. 2015, 44, 2508.
[12]
O'Brien, C. J.; Tellez, J. L.; Nixon, Z. S.; Kang, L. J.; Carter, A. L.; Kunkel, S. R.; Przeworski, K. C.; Chass, G. A. Angew. Chem., Int. Ed. 2009, 48, 6836.
[13]
O'Brien, C. J.; Lavigne, F.; Coyle, E. E.; Holohan, A. J.; Doonan, B. J. Chem. - Eur. J. 2013, 19, 5854.
[14]
Coyle, E. E.; Doonan, B. J.; Holohan, A. J.; Walsh, K. A.; Lavigne, F.; Krenske, E. H.; O'Brien, C. J. Angew. Chem., Int. Ed. 2014, 53, 12907.
[15]
Cao, J.; Zhou, F.; Zhou, J. Angew. Chem., Int. Ed. 2010, 49, 4976.
[16]
Longwitz, L.; Spannenberg, A.; Werner, T. ACS Catal. 2019, 9, 9237.
[17]
Nykaza, T. V.; Cooper, J. C.; Radosevich, A. T. Org. Synth. 2019, 96, 418.
[18]
Hoffmann, M.; Deshmukh, S.; Werner, T. Eur. J. Org. Chem. 2015, 2015, 4532.
[19]
Wang, L.; Sun, M.; Ding, M. W. Eur. J. Org. Chem. 2017, 2017, 2568.
[20]
Werner, T.; Hoffmann, M.; Deshmukh, S. Eur. J. Org. Chem. 2014, 2014, 6630.
[21]
Werner, T.; Hoffmann, M.; Deshmukh, S. Eur. J. Org. Chem. 2015, 2015, 3286.
[22]
Schirmer, M.-L. L.; Adomeit, S.; Werner, T. Org. Lett. 2015, 17, 3078.
[23]
Schirmer, M.-L.; Adomeit, S.; Spannenberg, A.; Werner, T. Chem. - Eur. J. 2016, 22, 2458.
[24]
Longwitz, L.; Werner, T. Angew. Chem., Int. Ed. 2020, 59, 2760.
[25]
Lee, C. J.; Chang, T. H.; Yu, J. K.; Madhusudhan Reddy, G.; Hsiao, M. Y.; Lin, W. Org. Lett. 2016, 18, 3758.
[26]
Saleh, N.; Voituriez, A. J. Org. Chem. 2016, 81, 4371.
[27]
Saleh, N.; Blanchard, F.; Voituriez, A. Adv. Synth. Catal. 2017, 359, 2304.
[28]
Zhang, K.; Cai, L.; Yang, Z.; Houk, K. N.; Kwon, O. Chem. Sci. 2018, 9, 1867.
[29]
Zhang, Q.; Zhu, Y.; Jin, H.; Huang, Y. Chem. Commun. 2017, 53, 3974.
[30]
Lorton, C.; Castanheiro, T.; Voituriez, A. J. Am. Chem. Soc. 2019, 141, 10142.
[31]
van Kalkeren, H. A.; Bruins, J. J.; Rutjes, F. P. J. T.; van Delft, F. L. Adv. Synth. Catal. 2012, 354, 1417.
[32]
Lenstra, D. C.; Wolf, J. J.; Mecinovic?, J. J. Org. Chem. 2019, 84, 6536.
[33]
Kosal, A. D.; Wilson, E. E.; Ashfeld, B. L. Angew. Chem., Int. Ed. 2012, 51, 12036.
[34]
Andrews, K. G.; Denton, R. M. Chem. Commun. 2017, 53, 7982.
[35]
White, P. B.; Rijpkema, S. J.; Bunschoten, R. P.; Mecinovic?, J. Org. Lett. 2019, 21, 1011.
[36]
van Kalkeren, H. A.; Te Grotenhuis, C.; Haasjes, F. S.; Hommersom, C. A.; Rutjes, F. P. J. T.; van Delft, F. L. Eur. J. Org. Chem. 2013, 2013, 7059.
[37]
Wang, L.; Wang, Y.; Chen, M.; Ding, M. W. Adv. Synth. Catal. 2014, 356, 1098.
[38]
Wang, L.; Xie, Y. B.; Huang, N. Y.; Yan, J. Y.; Hu, W. M.; Liu, M. G.; Ding, M. W. ACS Catal. 2016, 6, 4010.
[39]
Bel Abed, H.; Mammoliti, O.; Bande, O.; Van Lommen, G.; Herdewijn, P. Org. Biomol. Chem. 2014, 12, 7159.
[40]
Lertpibulpanya, D.; Marsden, S. P.; Rodriguez-Garcia, I.; Kilner, C. A. Angew. Chem., Int. Ed. 2006, 45, 5000.
[41]
Headley, C. E.; Marsden, S. P. J. Org. Chem. 2007, 72, 7185.
[42]
Cai, L.; Zhang, K.; Chen, S.; Lepage, R. J.; Houk, K. N.; Krenske, E. H.; Kwon, O. J. Am. Chem. Soc. 2019, 141, 9537.
[43]
van Kalkeren, H. A.; Leenders, S. H. A. M.; Hommersom, C. R. A.; Rutjes, F. P. J. T.; van Delft, F. L. Chem.-Eur. J. 2011, 17, 11290.
[44]
Longwitz, L.; Jopp, S.; Werner, T. J. Org. Chem. 2019, 84, 7863.
[45]
Lenstra, D. C.; Rutjes, F. P. J. T.; Mecinovic?, J. Chem. Commun. 2014, 50, 5763.
[46]
Lecomte, M.; Lipshultz, J. M.; Kim-Lee, S. H.; Li, G.; Radosevich, A. T. J. Am. Chem. Soc. 2019, 141, 12507.
[47]
O'Brien, C. J. US 8901365, 2014.
[48]
Buonomo, J. A.; Aldrich, C. C. Angew. Chem., Int. Ed. 2015, 54, 13041.
[49]
Hirose, D.; Gazvoda, M.; Kos?mrlj, J.; Taniguchi, T. Org. Lett. 2016, 18, 4036.
[50]
Beddoe, R. H.; Sneddon, H. F.; Denton, R. M. Org. Biomol. Chem. 2018, 16, 7774.
[51]
Beddoe, R. H.; Andrews, K. G.; Magne?, V.; Cuthbertson, J. D.; Saska, J.; Shannon-Little, A. L.; Shanahan, S. E.; Sneddon, H. F.; Denton, R. M. Science 2019, 365, 910.
[52]
Harris, J. R.; Haynes, M. T.; Thomas, A. M.; Woerpel, K. A. J. Org. Chem. 2010, 75, 5083.
[53]
Zhao, W.; Yan, P. K.; Radosevich, A. T. J. Am. Chem. Soc. 2015, 137, 616.
[54]
Osman, F. H.; El-Samahy, F. A. Chem. Rev. 2002, 102, 629.
[55]
Cadogan, J. I. G.; Cameron-Wood, M.; Mackie, R. K.; Searle, R. J. G. J. Chem. Soc. 1965, 4831.
[56]
Cadogan, J. I. G. Q. Rev., Chem. Soc. 1968, 22, 222.
[57]
Cadogan, J. I. G.; Todd, M. J. J. Chem. Soc. C 1969, 0, 2808.
[58]
Nykaza, T. V.; Harrison, T. S.; Ghosh, A.; Putnik, R. A.; Radosevich, A. T. J. Am. Chem. Soc. 2017, 139, 6839.
[59]
Schoene, J.; Bel Abed, H.; Schmieder, P.; Christmann, M.; Nazare?, M. Chem.-Eur. J. 2018, 24, 9090.
[60]
Nykaza, T. V.; Ramirez, A.; Harrison, T. S.; Luzung, M. R.; Radosevich, A. T. J. Am. Chem. Soc. 2018, 140, 3103.
[61]
Tsao, M.-L.; Gritsan, N.; James, T. R.; Platz, M. S.; Hrovat, D. A.; Borden, W. T. J. Am. Chem. Soc. 2003, 125, 9343.
[62]
Nykaza, T. V.; Cooper, J. C.; Li, G.; Mahieu, N.; Ramirez, A.; Luzung, M. R.; Radosevich, A. T. J. Am. Chem. Soc. 2018, 140, 15200.
[63]
Nykaza, T. V.; Li, G.; Yang, J.; Luzung, M. R.; Radosevich, A. Angew. Chem., Int. Ed. 2020, 59, 4505.
[64]
Ghosh, A.; Lecomte, M.; Kim-Lee, S. H.; Radosevich, A. T. Angew. Chem., Int. Ed. 2019, 58, 2864.
[65]
Burnett, M. G.; Oswald, T.; Walker, B. J. J. Chem. Soc., Chem. Commun. 1977, 5, 155.
[66]
Cao, S.-H.; Zhang, X.-C.; Wei, Y.; Shi, M. Eur. J. Org. Chem. 2011, 2011, 2668.
[67]
Longwitz, L.; Werner, T. Angew. Chem., Int. Ed. 2020, 59, 2760.
文章导航

/