综述与进展

芳基、烷基磷酸混酯类化合物的合成方法研究进展

  • 焦林郁 ,
  • 于华 ,
  • 宁资慧 ,
  • 李卓
展开
  • 西北大学化工学院 西安 710069

收稿日期: 2021-05-31

  修回日期: 2021-06-30

  网络出版日期: 2021-07-26

基金资助

国家自然科学基金(21901150)

Research Progress in the Preparation of Aryl and Alkyl Mixed Phosphates

  • Linyu Jiao ,
  • Hua Yu ,
  • Zihui Ning ,
  • Zhuo Li
Expand
  • School of Chemical Engineering, Northwest University, Xi'an 710069
* Corresponding author. E-mail:

Received date: 2021-05-31

  Revised date: 2021-06-30

  Online published: 2021-07-26

Supported by

National Natural Science Foundation of China(21901150)

摘要

芳基、烷基磷酸混酯是一类重要的有机磷化物, 广泛应用于生物、医药、农药、高分子以及材料科学等众多领域, 具有广阔的发展前景. 含磷基团所特有的物理、化学以及生物性质, 为其结构修饰、衍生化以及应用领域的拓展提供了更多可能, 因此, 该类化合物合成方法的研究具有重要的理论和现实意义. 综述了过去几十年芳基、烷基磷酸混酯化合物制备方法的研究进展, 列举了其应用实例, 分类总结了多种不同类型的含磷试剂向目标化合物转化的实验方法和发展历程, 选择性地探讨了反应的特点、机理以及在合成中的应用, 希望该综述能够为磷酸混酯类化合物新型制备方法的开发提供参考, 为相关领域的学者、研究生以及其他人员提供一些有益借鉴.

本文引用格式

焦林郁 , 于华 , 宁资慧 , 李卓 . 芳基、烷基磷酸混酯类化合物的合成方法研究进展[J]. 有机化学, 2021 , 41(11) : 4180 -4191 . DOI: 10.6023/cjoc202105056

Abstract

Aryl and alkyl mixed phosphates are very important phosphorus containing organic compounds, which are widely used in many fields, such as biology, medicine, pesticide, polymer, and material science. The unique physical, chemical, and biological properties of phosphorus-based motifs provide more possibilities for their structural modification, derivatization, and potential application. Therefore, the research on the preparation of these compounds has important theoretical and practical significance. In this paper, the research progress of the synthesis methodologies of aryl and alkyl mixed phosphate in the past few decades is reviewed. The application examples are listed. The experimental methods and development process of the conversion of various kinds of phosphorus containing reagents to target compounds are summarized. The characteristics, mechanism, and application of the reaction are discussed selectively as well. We hope that this review can provide a reference for the development of new preparation protocols of mixed phosphate, and provide some useful references for scholars, graduate students, and others in the related fields.

参考文献

[1]
Kozak, W.; Rachon, J.; Daśko, M.; Demkowicz, S. Asian J. Org. Chem. 2018, 7, 314.
[2]
Desloges, W.; Neverov, A. A.; Brown, R. S. Inorg. Chem. 2004, 43, 6752.
[3]
Timperley, C. M.; Casey, K. E.; Notman, S.; Sellers, D. J.; Williams, N. E.; Williams, N. H.; Williams, G. R. J. Fluorine Chem. 2006, 127, 1554.
[4]
Selikhov, A. N.; Malysheva, Y. B.; Nyuchev, A. V.; Sitnikov, N. S.; Sharonova, E. A.; Shavyrin, A. S.; Combes, S.; Fedorov, A. Y. Russ. Chem. Bull. 2011, 60, 2003.
[5]
Mills, S. J.; Dozol, H.; Vandeput, F.; Backers, K.; Woodman, T.; Erneux, C.; Spiess, B.; Potter, B. V. L. ChemBioChem 2006, 7, 1696.
[6]
Silverberg, L. J.; Dillon, J. L.; Vemishetti, P. Tetrahedron Lett. 1996, 37, 771.
[7]
Jiao, L.-Y.; Zhang, Z.; Yin, X.-M.; Li, Z.; Ma, X.-X. J. Catal. 2019, 379, 39.
[8]
Shen, J.; Zhang, Y.; Yu, N.; Crump, D.; Li, J.; Su, H.; Letcher, R. J.; Su, G. Environ. Sci. Technol. 2019, 53, 2151.
[9]
Xu, D. CN 103360606, 2013.
[10]
Liu, W. CN 109912646, 2021.
[11]
Liang, R. CN 105833790, 2020.
[12]
Stubbings, W. A.; Riddell, N.; Chittim, B.; Venier, M. Environ. Sci. Technol. Lett. 2017, 4, 292.
[13]
Atherton, F. R.; Openshaw, H. T.; Todd, A. R. J. Chem. Soc. 1945, 660.
[14]
Atherton, F. R.; Todd, A. R. J. Chem. Soc. 1947, 674.
[15]
Cao, S.; Zhao, Y. Sci. China Chem. 2015, 45, 283. (in Chinese)
[15]
(曹书霞, 赵玉芬, 中国科学, 化学, 2015, 45, 283.)
[16]
Le Corre, S. S.; Berchel, M.; Couthon-Gourvès, H.; Haelters, J.-P.; Jaffrès, P.-A. Beilstein J. Org. Chem. 2014, 10, 1166.
[17]
Chen, X.; Yu, Y.; Qu, L.; Liao, X.; Zhao, Y. Synth. Commun. 2004, 34, 493.
[18]
Yang, Y.; Qu, C.; Chen, X.; Sun, K.; Qu, L.; Bi, W.; Hu, H.; Li, R.; Jing, C.; Wei, D.; Wei, S.; Sun, Y.; Liu, H.; Zhao, Y. Org. Lett. 2017, 19, 5864.
[19]
Okamoto, Y.; Kusano, T.; Takamuku, S. Bull. Chem. Soc. Jpn. 1988, 61, 3359.
[20]
Gupta, A. K.; Acharya, J.; Dubey, D. K.; Kaushik, M. P. Synth. Commun. 2007, 37, 3403.
[21]
Anitha, T.; Ashalu, K. C.; Sandeep, M.; Mohd, A.; Wencel-Delord, J.; Colobert, F.; Reddy, K. R. Eur. J. Org. Chem. 2019, 7463.
[22]
Wu, J.; Wang, B. Zhejian Chem. Ind. 2008, 39, 27. (in Chinese)
[22]
(吴晶, 王博, 浙江化工, 2008, 39, 27.)
[23]
Dhawan, B.; Redmore, D. J. Org. Chem. 1986, 51, 179.
[24]
Powles, N.; Atherton, J.; Page, M. I. Org. Biomol. Chem. 2012, 10, 5940.
[25]
Jones, S.; Selitsianos, D. Org. Lett. 2002, 4, 3671.
[26]
Jones, S.; Selitsianos, D.; Thompson, K. J.; Toms, S. M. J. Org. Chem. 2003, 68, 5211.
[27]
Acharya, J.; Shakya, P. D.; Pardasani, D.; Palit, M.; Dubey, D. K.; Gupta, A. K. J. Chem. Res. 2005, 194.
[28]
Liu, C.-Y.; Pawar, V. D.; Kao, J.-Q.; Chen, C.-T. Adv. Synth. Catal. 2010, 352, 188.
[29]
Xiao, P.; Zhang, J.; Feng, Y.; Wu, J.; He, J.; Zhang, J. Cellulose 2014, 21, 2369.
[30]
Weiss-Shtofman, M.; Kramer, M.; Dobrovetsky, R.; Portno, M. Org. Lett. 2020, 22, 3722.
[31]
Vignola, N.; Dahmen, S.; Enders, D.; Bräse, S. J. Comb. Chem. 2003, 5, 138.
[32]
Sathe, M.; Gupta, A. K.; Kaushik, M. P. Tetrahedron Lett. 2006, 47, 3107.
[33]
Gupta, A. K.; Kumar, R.; Dubey, D. K.; Kaushik, M. P. J. Chem. Res. 2007, 328.
[34]
Kasemsuknimit, A.; Satyender, A.; Chavasiri, W.; Jang, D. O. Bull. Korean Chem. Soc. 2011, 32, 3486.
[35]
Xiong, B.; Ye, Q.; Feng, X.; Zhu, L.; Chen, T.; Zhou, Y.; Au, C.-T.; Yin, S.-F. Tetrahedron. 2014, 70, 9057.
[36]
(a) Xiong, B.; Feng, X.; Zhu, L.; Chen, T.; Zhou, Y.; Au, C.-T.; Yin, S.-F. ACS Catal. 2015, 5, 537.
[36]
(b) Xiong, B.; Zeng, K.; Zhang, S.; Zhou, Y.; Au, C.-T.; Yin, S.-F. Tetrahedron 2015, 71, 9293.
[37]
Xiong, B.; Cheng, Q.; Hu, C.; Zhang, P.; Liu, Y.; Tang, K. ChemistrySelect 2017, 2, 6891.
[38]
Xiong, B.; Hu, C.; Li, H.; Zhou, C.; Zhang, P.; Liu, Y.; Tang, K. Tetrahedron Lett. 2017, 58, 2482.
[39]
Xiong, B.; Hu, C.; Gu, J.; Yang, C.; Zhang, P.; Liu, Y.; Tang, K. ChemistrySelect 2017, 2, 3376.
[40]
Xiong, B.; Wang, G.; Zhou, C.; Liu, Y.; Li, J.; Zhang, P.; Tang, K. Phosphorus, Sulfur Silicon Relat. Elem. 2018, 193, 239.
[41]
Bartlett, P. D.; Lonzetta, C. M.; J. Am. Chem. Soc. 1983, 105, 1984.
[42]
Stephenson, L. M.; McClure, D. E. J. Am. Chem. Soc. 1973, 95, 3074.
[43]
Oba, M.; Okada, Y.; Nishiyama, K.; Ando, W. Org. Lett. 2009, 11, 1879.
[44]
Tamilselvi, A.; Mugesh, G. Chem.-Eur. J. 2010, 16, 8878.
[45]
Kang, B.; Kurutz, J. W.; Youm, K.-T.; Totten, R. K.; Hupp, J. T.; Nguyen, S. T. Chem. Sci. 2012, 3, 1938.
[46]
Totten, R. K.; Ryan, P.; Kang, B.; Lee, S. J.; Broadbelt, L. J.; Snurr, R. Q.; Hupp, J. T.; Nguyen, S. T. Chem. Commun. 2012, 48, 4178.
[47]
Katz, M. J.; Mondloch, J. E.; Totten, R. K.; Park, J. K.; Nguyen, S. T.; Farha, O. K.; Hupp, J. T. Angew. Chem. Int. Ed. 2014, 53, 497.
[48]
Huang, H.; Ash, J.; Kang, J. Y. Org. Lett. 2018, 20, 4938.
[49]
Nilsson, J.; Kraszewski, A.; Stawinski, J. J. Chem. Soc., erkin Trans. 2001, 2263.
[50]
Kaboudin, B.; Mostafalu, R. Phosphorus, Sulfur Silicon Relat. Elem. 2012, 187, 776.
[51]
Keith, J. M. J. Org. Chem. 2006, 71, 9540.
[52]
Kim, H.; Park, J.; Kim, J. G.; Chang, S. Org. Lett. 2014, 16, 5466.
[53]
Yamada, K.; Yamashita, M.; Sumiyoshi, T.; Nishimura, K.; Tomioka, K. Org. Lett. 2009, 11, 1631.
[54]
Haberhauer, G.; Rominger, F. Eur. J. Org. Chem. 2003, 3209.
[55]
Ying, J.; Gao, Q.; Wu, X.-F. Chem. Asian J. 2020, 15, 1540.
[56]
Jiao, L.-Y.; Zhang, Z.; Hong, Q.; Ning, Z.-H.; Liu, S.; Sun, M.; Hao, Q.; Xu, L.; Li, Z.; Ma, X.-X. Mol. Catal. 2020, 494, 111120.
[57]
Matsumoto, S.; Masuda, H.; Iwata, K.; Mitsunobu, O. Tetrahedron Lett. 1973, 14, 1733.
[58]
Maezaki, N.; Furusawa, A.; Hirose, Y.; Uchida, S.; Tanaka, T. Tetrahedron 2002, 58, 3493.
[59]
Jones, S.; Smanmoo, C. Tetrahedron Lett. 2004, 45, 1585.
[60]
Jones, S.; Smanmoo, C. Org. Lett. 2005, 7, 3271.
[61]
Panmand, D. S.; Tiwari, A. D.; Panda, S. S.; Monbaliu, J.-C. M.; Beagle, L. K.; Asiri, A. M.; Stevens, C. V.; Steel, P. J.; Hall, C. D.; Katritzky, A. R. Tetrahedron Lett. 2014, 55, 5898.
[62]
Harusawa, S.; Shioiri, T. Tetrahedron. 2016, 72, 8125.
[63]
Łopusiński, A. Heteroat. Chem. 2004, 15, 395.
[64]
Guzmán, A.; Diaz, E. Synth. Commun. 1997, 27, 3035.
文章导航

/