研究论文

深共融溶剂中Baeyer缩合反应合成三芳基甲烷衍生物

  • 乐长高 ,
  • 胡智宇 ,
  • 陈学华 ,
  • 鄢丽媛 ,
  • 刘一帅 ,
  • 谢宗波
展开
  • 东华理工大学 江西省合成化学重点实验室 江西南昌 330013

收稿日期: 2021-06-02

  修回日期: 2021-07-27

  网络出版日期: 2021-08-10

基金资助

国家自然科学基金(11765002)

Synthesis of Triarylmethane Derivatives by Baeyer Condensation in a Deep Eutectic Solvent

  • Zhanggao Le ,
  • Zhiyu Hu ,
  • Xuehua Chen ,
  • Liyuan Yan ,
  • Yishuai Liu ,
  • Zongbo Xie
Expand
  • Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013
* Corresponding author. E-mail:

Received date: 2021-06-02

  Revised date: 2021-07-27

  Online published: 2021-08-10

Supported by

National Natural Science Foundation of China(11765002)

摘要

三芳基甲烷及其衍生物在纺织、医药等领域被广泛应用, 有关它的高效合成方法备受研究者的关注. 本研究选用了绿色的深共融溶剂[ChCl][ZnCl2]协同促进苯甲醛与N-取代苯胺之间的Baeyer缩合反应, 高效地合成了多种三芳基甲烷衍生物. 该方法采用了深共融溶剂作为催化剂和绿色反应介质, 无需额外添加催化剂, 仅用几个小时就能得到目标产物. 此外, 深共融溶剂在此过程中重复使用了多次, 且没有明显的活性损失.

本文引用格式

乐长高 , 胡智宇 , 陈学华 , 鄢丽媛 , 刘一帅 , 谢宗波 . 深共融溶剂中Baeyer缩合反应合成三芳基甲烷衍生物[J]. 有机化学, 2021 , 41(11) : 4415 -4420 . DOI: 10.6023/cjoc202106003

Abstract

Triarylmethane derivatives and their syntheses are of great interest owing to their broad applicability in areas from textiles to medicine. In this study, the green solvent [ChCl][ZnCl2] synergistically promoted Baeyer condensation between benzaldehyde and N-substituted aniline to efficiently synthesize triarylmethane derivatives with high para-selectivity. The employed deep eutectic solvent acted as both a catalyst and green reaction medium for the reaction. Moreover, the deep eutectic solvent was reused several times in this procedure without significant loss of activity.

参考文献

[1]
(a) Bogeso, K. P.; Christensen, A. V.; Hyttel, J.; Liljefors, T. J. Med. Chem. 1985, 28, 1817.
[1]
(b) Yokoshima, S.; Ueda, T.; Kobayashi, S.; Sato, A.; Kuboyama, T.; Tokuyama, H.; Fukuyama, T. J. Am. Chem. Soc. 2002, 124, 2137.
[1]
(c) Pan, P.; Shen, M.; Yu, H.; Li, Y.; Li, D.; Hou, T. Drug Discovery Today 2013, 18, 1323.
[1]
(d) Xu, L.; Li, Y.; Sun, H.; Zhen, X.; Qiao, C.; Tian, S.; Hou, T. Drug Discovery Today 2013, 18, 592.
[1]
(e) Zhu, J.; Hou, T.; Mao, X. Drug Discovery Today 2015, 20, 988.
[1]
(f) Zhang, Y.; Yang, X.; Zhou, H.; Li, S.; Zhu, Y.; Li, Y. Org. Chem. Front. 2018, 5, 2120.
[1]
(g) Jadhav, S. D.; Singh, A. J. Org. Chem. 2016, 81, 522.
[1]
(h) Huo, C.; Wang, C.; Sun, C.; Jia, X.; Wang, X.; Chang, W.; Wua, M. Adv. Synth. Catal. 2013, 355, 1911.
[2]
(a) Irie, M.; Kungwatchakun, D. Makromol. Rapid Commun. 1984, 5, 829.
[2]
(b) Mitra, S. J. Polym. Sci., art C: Polym. Symp. 1986, 74, 165.
[2]
(c) Mai, H. H.; Solomon, H. M.; Taguchi, M.; Kojima, T. Radiat. Phys. Chem. 2008, 77, 457.
[3]
(a) Parai, M. K.; Panda, G.; Chaturvedi, V.; Manju, Y. K.; Sinha, S. Bioorg. Med. Chem. Lett. 2008, 18, 289.
[3]
(b) Duxbury, D. F. Chem. Rev. 1993, 93, 381.
[3]
(c) Cho, B. P.; Yang, T.; Blankenship, L. R.; Moody, J. D.; Churchwell, M.; Beland, F. A.; Culp, S. J. Chem. Res. Toxicol. 2003, 16, 285.
[4]
Niwa, T.; Yorimitsu, H.; Oshima, K. Org. Lett. 2007, 9, 2373.
[5]
(a) Muthyala, R.; Katritzky, A. R.; Lan, X. Dyes Pigm. 1994, 25, 303.
[5]
(b) Ritchie, C. D.; Sager, W. F.; Lewis, E. S. J. Am. Chem. Soc. 1962, 84, 2349.
[5]
(c) Alvaro, M.; Garcia, H.; Sanjuan, A.; Espla, M. Appl. Catal., A 1998, 175, 105.
[5]
(d) Chalk, A. J.; Halpern, J.; Harkness, A. C. J. Am. Chem. Soc. 1959, 81, 5854.
[5]
(e) Zhang, Z. H.; Yang, F.; Li, T. S.; Fu, C. G. Synth. Commun. 1997, 27, 3823;
[5]
(f) An, L. T.; Ding, F. Q.; Zou, J. P. Dyes Pigm. 2008, 77, 478.
[6]
(a) Smith, E. L.; A. P. Abbott, A. P.; Ryder, K. S. Chem. Rev. 2014, 114, 11060.
[6]
(b) Zhang, Q.; Vigier, K. D. O.; Royer, S.; Jérôme, F. Chem. Soc. Rev. 2012, 41, 7108.
[6]
(c) Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R. L.; Duarte, A. R. C. ACS Sustainable Chem. Eng. 2014, 2, 1063.
[6]
(d) Tang, B.; Row, K. H. Monatsh. Chem. 2013, 144, 1427.
[6]
(e) del Monte, F.; Carriazo, D.; Serrano, M. C.; Gutiérrez, M. C.; Ferrer, M. L. ChemSusChem 2014, 7, 999.
[6]
(f) Marcus, Y. ACS. Sustainable Chem. Eng. 2017, 5, 11780.
[6]
(g) Alonso, D. A.; Baeza, A.; Chinchilla, R.; Guillena, G.; Pastor, I. M.; Ramón, D. J. Eur. J. Org. Chem. 2016, 612.
[6]
(h) Gao, G.; Wang, P.; Liu, P.; Zhang, W.; Mo, L. P.; Zhang, Z. H. Chin. J. Org. Chem. 2018, 38, 846. (in Chinese)
[6]
(高歌, 王萍, 刘鹏, 张卫红, 默丽萍, 张占辉, 有机化学, 2018, 38, 846.)
[6]
(i) Xiong, X. Q.; Han, Q.; Shi, L.; Xiao, S. Y.; Bi, C. Chin. J. Org. Chem. 2016, 36, 480. (in Chinese)
[6]
(熊兴泉, 韩骞, 石霖, 肖上运, 毕成, 有机化学, 2016, 36, 480.)
[6]
(j) Zhang, M.; Liu, Y. H.; Shang, Z. R.; Hu, H. C.; Zhang, Z. H. Catal. Commun. 2017, 88, 39.
[7]
(a) Abbott, A. P.; Capper, G.; Davies, D. L.; Munro, H. L.; Rasheed, R. K.; Tambyrajah, V. Chem. Commun. 2001, 19, 2010.
[7]
(b) González-Martínez, D.; Gotor, V.; Gotor-Fernández, V. Eur. J. Org. Chem. 2016, 1513.
[7]
(c) Marset, X. Pérez, J. M.; Ramón, D. J. Green Chem. 2016, 18, 826.
[7]
(d) Zhang, M.; Liu, P.; Liu, Y. H., Shang, Z. R.; Hu, H. C.; Zhang, Z. H. RSC Adv. 2016, 6, 106160.
[7]
(e) Zhang, W. H.; Chen, M. N.; Hao, Y.; Jiang, X.; Zhou, X. L.; Zhang, Z. H. J. Mol. Liq. 2019, 278, 124.
[7]
(f) Ma, C. T.; Liu, P.; Wu, W.; Zhang, Z. H. J. Mol. Liq. 2017, 242, 606.
[7]
(g) Xiao, L. W.; Liu, G. X.; Li, Z.; Ren, P.; Ren, L. L.; Kong, J. Chin. J. Org. Chem. 2020, 40, 2988. (in Chinese)
[7]
(肖立伟, 刘光仙, 李政, 任萍, 任丽磊, 孔洁, 有机化学, 2020, 40, 2988.)
[8]
(a) Chen, S.; Zhang, J.; Wu, T.; Feng, P.; Bu, X. Dalton Trans. 2010, 39, 697.
[8]
(b) Maugeri, Z.; de María, P. D. RSC Adv. 2012, 2, 421.
[8]
(c) Sirviö, J. A.; Heiskanen, J. P. ChemSusChem 2017, 10, 455.
[9]
(a) Liu, P.; Hao, J. W.; Mo, L. P.; Zhang, Z. H. RSC Adv. 2015, 5, 48675.
[9]
(b) Gorke, J.; Srienc, F.; Kazlauskas, R. Biotechnol. Bioprocess Eng. 2010, 15, 40.
[9]
(c) Parnica, J.; Antalik, M. J. Mol. Liq. 2014, 197, 23.
[9]
(d) Kumar, A. K.; Parikh, B. S.; Pravakar, M. Environ. Sci. Pollut. Res. 2016, 23, 9265.
[9]
(e) Khandelwal, S.; Tailor, Y. K.; Kumar, M. J. Mol. Liq. 2016, 215, 345.
[9]
(f) Huang, Z. L.; Wu, B. P.; Wen, Q.; Yang, T. X.; Yang, Z. J. Chem. Technol. Biotechnol. 2014, 89, 1975.
[9]
(g) Tang, X.; Zuo, M.; Li, Z.; Liu, H.; Xiong, C.; Zeng, X.; Sun, Y.; Hu, L.; Liu, S.; Lei, T.; Lin, L. ChemSusChem 2017, 10, 2696.
[9]
(h) Liu, Y.; Friesen, J. B.; McAlpine, J. B.; Lankin, D. C.; Chen, S. N.; Pauli, G. F. J. Nat. Prod. 2018, 81, 679.
[10]
Morales, R. C.; Tambyrajah, V.; Jenkins, P. R.; Davies, D. L.; Abbott, A. P. Chem. Commun. 2004, 158.
[11]
Mobinikhaledi, A.; Amiri, A. Res. Chem. Intermed. 2015, 41, 2063.
[12]
(a) Chen, G.-Q.; Xie, Z-B.; Liu, Y.-S; Meng, J.; Le, Z.-G. Chin. J. Org. Chem. 2020, 40, 156. (in Chinese)
[12]
(陈国庆, 谢宗波, 刘一帅, 孟佳, 乐长高, 有机化学, 2020, 40, 156.)
[12]
(b) Chen, G.-Q.; Xie, Z.-B.; Ai, F.; Chen, Z.-S.; Lan, J.; Hu, Z.-Y.; Le, Z.-G. Heterocycles 2019, 98, 1189.
[12]
(c) Hu, Z. Y.; Jiang, G. F.; Zhu, Z. Q.; Gong, B. Z.; Xie, Z. B.; Le, Z. G. Chin. J. Org. Chem. 2021, 41, 325. (in Chinese)
[12]
(胡智宇, 姜国芳, 祝志强, 龚伯桢, 谢宗波, 乐长高, 有机化学, 2021, 41, 325.)
[12]
(d) Hu, Z. Y.; Xie, Z. B.; Zhu, Z. Q.; Gong, B. Z.; Jiang, G. F.; Le, Z. G. Org. Biomol. Chem. 2020, 18, 9095.
[12]
(e) Tang, R. J.; Milcent, T.; Crousse, B. RSC Adv. 2018, 19, 10314;
[12]
(f) Mohit, L. D.; Bhaskar, D.; Iftakur, R.; Pranjal, K. B. Tetrahedron Lett. 2018, 4430.
[13]
(a) Zhang, Y. Y.; Lu, X. H.; Feng, X.; Shi, Y. J.; Ji, X. Y. Prog. Chem. 2013, 25, 881.
[13]
(b) Duan, Z.; Gu, Y.; Deng, Y. Catal. Commun. 2006, 7, 651.
[13]
(c) Long, T.; Deng, Y. F.; Gan, S. C.; Chen, J. Chin. J. Chem. Eng. 2010, 18, 322. (in Chinese)
[13]
(龙涛, 邓岳锋, 甘树才, 陈继, 化学工程学报, 2010, 18, 322.)
[13]
(d) Inaloo, I. D.; Majnooni, S.; Esmaeilpour, M. Eur. J. Org. Chem. 2018, 26, 3481.
[14]
Harshal, M. B.; Balaram, S. T.; Vikas, N. T. Synth. Commun. 2013, 43, 1909.
[15]
Hou, J. T.; Gao, J. T.; Zhang, Z. H. Monatsh. Chem. 2021, 142, 495.
[16]
Calvin, D. R.; Sager, W. F.; Lewis, E. S. J. Am. Chem. Soc. 1962, 84, 2349.
[17]
(a) Rafael, F. A. G.; Jaime, A. S. C.; Raquel, F. M. F.; Alexandre, F. T.; Carlos, A. M. A. J. Org. Chem. 2015, 80, 10404.
[17]
(b) Braun, J. V. Chem. Ber. 1904, 37, 643.
文章导航

/