三亚吡嗪材料能源应用研究进展
收稿日期: 2021-05-17
修回日期: 2021-07-31
网络出版日期: 2021-08-19
基金资助
国家自然科学基金(21805134); 江苏省自然科学基金(BK20191363); 南京市留学人员择优资助; 南京工业大学启动基金(39837141)
Recent Advancements of Hexaazatriphenylene-Based Materials for Energy Applications
Received date: 2021-05-17
Revised date: 2021-07-31
Online published: 2021-08-19
Supported by
National Natural Science Foundation of China(21805134); Natural Science Foundation of Jiangsu Province(BK20191363); Science and Technology Innovation Project for Overseas Students from Nanjing City; Start-up Grant from Nanjing Tech University(39837141)
三亚吡嗪(HAT)是一种缺电子刚性平面芳香族盘状结构, 具有出色的π-π堆叠能力. 由于独特的拓扑结构和电子特征, HAT已被广泛用于构筑超分子材料、共价有机框架材料(COFs)、多孔氢键有机框架材料(HOFs)、金属有机框架材料(MOFs)等. HAT衍生物在催化、半导体、单分子磁体、水氧化、质子传导等方面也表现出巨大的应用潜能. 近年来, 由于能源需求的激增, 科学家们基于HAT衍生物在能源领域中的应用进行了大量的研究. 在跟踪了HAT衍生物在能源领域的研究进展的基础上, 综述了该领域研究的最新进展.
关键词: 三亚吡嗪(HAT)衍生物; 能源应用; 共价有机框架
崔超慧 , 刘玉婷 , 杜亚 . 三亚吡嗪材料能源应用研究进展[J]. 有机化学, 2021 , 41(11) : 4167 -4179 . DOI: 10.6023/cjoc202105031
Hexaazatriphenylene (HAT) is an electron deficient, rigid, planar, aromatic discotic molecule with three fused pyrazine rings and excellent π-π stacking ability. Due to its excellent topology and electronic properties, HAT has been exploited as structural motifs of supramolecules, covalent organic frameworks (COFs), porous hydrogen-bonded organic frameworks (HOFs), and metal organic frameworks (MOFs). HAT derivatives have been utilized in catalysis, semiconductors, monomolecular magnets, water oxidation, proton conduction, etc. In recent years, motivated by the increasing energy demand, scientists have intensively studied the energy applications of HAT derivatives. In this paper, the recent progress of HAT derivatives in the field of energy has been reviewed.
[1] | Nasielski-Hinkens, R.; Benedek-Vamos, M.; Maetens, D.; Nasielski, J. J. Organomet. Chem. 1981, 217, 179. |
[2] | (a) Deng, H. L.; Luo, X. S.; Li, Z. H.; Zhao, J. Y.; Huang, M. H. Chin. J. Org. Chem. 2021, 41, 624. (in Chinese) |
[2] | (邓汉林, 罗贤升, 李志华, 赵江颖, 黄木华, 有机化学, 2021, 41, 624.) |
[2] | (b) Pang, C. M.; Luo, S. H.; Hao, Z. F.; Gao, J.; Huang, Z. H.; Yu, J. H.; Yu, S. M.; Wang, Z. Y. Chin. J. Org. Chem. 2018, 38, 2606. (in Chinese) |
[2] | (庞楚明, 罗时荷, 郝志峰, 高健, 黄召昊, 余家海, 余思敏, 汪朝阳, 有机化学, 2018, 38, 2606.) |
[3] | (a) Kitagawa, S.; Masaoka, S. Coord. Chem. Rev. 2003, 246, 73. |
[3] | (b) Segura, J. L.; Juárez, R.; Ramos, M.; Seoane, C. Chem. Soc. Rev. 2015, 44, 6850. |
[3] | (c) Yan, X.-Y.; Lin, M.-D.; Zheng, S.-T.; Zhan, T.-G.; Zhang, X.; Zhang, K.-D.; Zhao, X. Tetrahedron Lett. 2018, 59, 592. |
[4] | (a) Liu, R.; von Malotki, C.; Arnold, L.; Koshino, N.; Higashimura, H.; Baumgarten, M.; Müllen, K. J. Am. Chem. Soc. 2011, 133, 10372. |
[4] | (b) Ibáñez, S.; Poyatos, M.; Peris, E. Chem. Commun. 2017, 53, 3733. |
[5] | Ramimoghadam, D.; Gray, E. M.; Webb, C. J. Int. J. Hydrogen Energy 2016, 41, 16944. |
[6] | (a) Lee, J.-S. M.; Cooper, A. I. Chem. Rev. 2020, 120, 2171. |
[6] | (b) Xu, Y.; Jin, S.; Xu, H.; Nagai, A.; Jiang, D. Chem. Soc. Rev. 2013, 42, 8012. |
[7] | (a) Hisaki, I.; Suzuki, Y.; Gomez, E.; Cohen, B.; Tohnai, N.; Douhal, A. Angew. Chem., Int. Ed. 2018, 57, 12650. |
[7] | (b) Hisaki, I.; Suzuki, Y.; Gomez, E.; Ji, Q.; Tohnai, N.; Nakamura, T.; Douhal, A. J. Am. Chem. Soc. 2019, 141, 2111. |
[8] | (a) Côté, A. P.; Benin, A. I.; Ockwig, N. W.; Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166. |
[8] | (b) Ding, S.-Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548. |
[8] | (c) Huang, Z.; Xu, Q.; Hu, X. Chin. Chem. Lett. 2020, 31, 2495. |
[9] | Meng, Z.; Aykanat, A.; Mirica, K. A. Chem. Mater. 2019, 31, 819. |
[10] | (a) Yuan, F.; Li, J.; Namuangruk, S.; Kungwan, N.; Guo, J.; Wang, C. Chem. Mater. 2017, 29, 3971. |
[10] | (b) Tahir, N.; Wang, G.; Onyshchenko, I.; De Geyter, N.; Leus, K.; Morent, R.; Van Der Voort, P. J. Catal. 2019, 375, 242. |
[10] | (c) Huang, H.; Zhao, Y.; Bai, Y.; Li, F.; Zhang, Y.; Chen, Y. Adv. Sci. 2020, 7, 2000012. |
[10] | (d) Xiao, R.; Tobin, J. M.; Zha, M.; Hou, Y.-L.; He, J.; Vilela, F.; Xu, Z. J. Mater. Chem. A 2017, 5, 20180. |
[10] | (e) Bai, C.; Wang, H.; Ning, F.; Fu, J.; Wei, J.; Lu, G.; Shen, Y.; Zhou, X. ChemCatChem 2020, 12, 4024. |
[11] | (a) Liu, X.-Y.; Usui, T.; Hanna, J. Chem.-Eur. J. 2014, 20, 14207. |
[11] | (b) Mahmood, J.; Lee, E. K.; Jung, M.; Shin, D.; Jeon, I.-Y.; Jung, S.-M.; Choi, H.-J.; Seo, J.-M.; Bae, S.-Y.; Sohn, S.-D.; Park, N.; Oh, J. H.; Shin, H.-J.; Baek, J.-B. Nat. Commun. 2015, 6, 6486. |
[12] | Gould, C. A.; Darago, L. E.; Gonzalez, M. I.; Demir, S.; Long, J. R. Angew. Chem., Int. Ed. 2017, 56, 10103. |
[13] | Walczak, R.; Kurpil, B.; Savateev, A.; Heil, T.; Schmidt, J.; Qin, Q.; Antonietti, M.; Oschatz, M. Angew. Chem., Int. Ed. 2018, 57, 10765. |
[14] | Kurpil, B.; Savateev, A.; Papaefthimiou, V.; Zafeiratos, S.; Heil, T.; Özenler, S.; Dontsova, D.; Antonietti, M. Appl. Catal., B 2017, 217, 622. |
[15] | Poizot, P.; Gaubicher, J.; Renault, S.; Dubois, L.; Liang, Y.; Yao, Y. Chem. Rev. 2020, 120, 6490. |
[16] | Liang, Y.; Yao, Y. Joule 2018, 2, 1690. |
[17] | (a) Chen, R.; Luo, R.; Huang, Y.; Wu, F.; Li, L. Adv. Sci. 2016, 3, 1600051. |
[17] | (b) Liu, J.; Zhang, J.-G.; Yang, Z.; Lemmon, J. P.; Imhoff, C.; Graff, G. L.; Li, L.; Hu, J.; Wang, C.; Xiao, J.; Xia, G.; Viswanathan, V. V.; Baskaran, S.; Sprenkle, V.; Li, X.; Shao, Y.; Schwenzer, B. Adv. Funct. Mater. 2013, 23, 929. |
[18] | Larcher, D.; Tarascon, J. M. Nat. Chem. 2015, 7, 19. |
[19] | Zhang, C. M.; Huang, Z.; Yang, Y.; Wang, D.; He, D. N. Chin. J. Org. Chem. 2014, 34, 1347. (in Chinese) |
[19] | (张春明, 黄昭, 杨扬, 王丹, 何丹农, 有机化学, 2014, 34, 1347.) |
[20] | Wang, R.; Okajima, T.; Kitamura, F.; Matsumoto, N.; Thiemann, T.; Mataka, S.; Ohsaka, T. J. Phys. Chem. B 2003, 107, 9452. |
[21] | Zhu, L.; Ding, G.; Xie, L.; Cao, X.; Liu, J.; Lei, X.; Ma, J. Chem. Mater. 2019, 31, 8582. |
[22] | Takayuki, M.; Takayuki, K.; Toyonari, S.; Masaharu, S. Chem. Lett. 2011, 40, 750. |
[23] | Peng, C.; Ning, G.-H.; Su, J.; Zhong, G.; Tang, W.; Tian, B.; Su, C.; Yu, D.; Zu, L.; Yang, J.; Ng, M.-F.; Hu, Y.-S.; Yang, Y.; Armand, M.; Loh, K. P. Nat. Energy 2017, 2, 17074. |
[24] | Wang, J.; Tee, K.; Lee, Y.; Riduan, S. N.; Zhang, Y. J. Mater. Chem. A 2018, 6, 2752. |
[25] | Xu, F.; Chen, X.; Tang, Z.; Wu, D.; Fu, R.; Jiang, D. Chem. Commun. 2014, 50, 4788. |
[26] | Wang, J.; Chen, C. S.; Zhang, Y. ACS Sustainable Chem. Eng. 2018, 6, 1772. |
[27] | Zhang, Y.; Riduan, S. N.; Wang, J. Chem.-Eur. J. 2017, 23, 16419. |
[28] | Li, Q.; Wang, H.; Wang, H.-g.; Si, Z.; Li, C.; Bai, J. ChemSusChem 2020, 13, 2449. |
[29] | Wang, J.; Lee, Y.; Tee, K.; Riduan, S. N.; Zhang, Y. Chem. Commun. 2018, 54, 7681. |
[30] | Wang, J.; En, J. C. Z.; Riduan, S. N.; Zhang, Y. Chem.-Eur. J. 2020, 26, 2581. |
[31] | Xu, S.; Wang, G.; Biswal, B. P.; Addicoat, M.; Paasch, S.; Sheng, W.; Zhuang, X.; Brunner, E.; Heine, T.; Berger, R.; Feng, X. Angew. Chem., Int. Ed. 2019, 58, 849. |
[32] | Wu, M.; Zhao, Y.; Sun, B.; Sun, Z.; Li, C.; Han, Y.; Xu, L.; Ge, Z.; Ren, Y.; Zhang, M.; Zhang, Q.; Lu, Y.; Wang, W.; Ma, Y.; Chen, Y. Nano Energy 2020, 70, 104498. |
[33] | (a) Du, Y.; Cui, C. H.; Li, Z; Zhang, Y.; Jiang, H.; Liu, Y.CN 113292725, 2021. |
[33] | (b) Yang, Y.; Zheng, F.; Xia, G.; Lun, Z.; Chen, Q. J. Mater. Chem. A 2015, 3, 18657. |
[34] | Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Wei, F.; Zhang, J.-G.; Zhang, Q. Adv. Sci. 2016, 3, 1600051. |
[35] | Mao, M.; Gao, T.; Hou, S.; Wang, F.; Chen, J.; Wei, Z.; Fan, X.; Ji, X.; Ma, J.; Wang, C. Nano Lett. 2019, 19, 6665. |
[36] | Poizot, P.; Gaubicher, J.; Renault, S.; Dubois, L.; Liang, Y.; Yao, Y. Chem. Rev. 2020, 14, 6490. |
[37] | Mao, M.; Luo, C.; Pollard, T. P.; Hou, S.; Gao, T.; Fan, X.; Cui, C.; Yue, J.; Tong, Y.; Yang, G.; Deng, T.; Zhang, M.; Ma, J.; Suo, L.; Borodin, O.; Wang, C. Angew. Chem., Int. Ed. 2019, 58, 17820. |
[38] | Shi, R.; Liu, L.; Lu, Y.; Wang, C.; Li, Y.; Li, L.; Yan, Z.; Chen, J. Nat. Commun. 2020, 11, 178. |
[39] | Liang, Y.; Jing, Y.; Gheytani, S.; Lee, K.-Y.; Liu, P.; Facchetti, A.; Yao, Y. Nat. Mater. 2017, 16, 841. |
[40] | Wu, X.; Hong, J. J.; Shin, W.; Ma, L.; Liu, T.; Bi, X.; Yuan, Y.; Qi, Y.; Surta, T. W.; Huang, W.; Neuefeind, J.; Wu, T.; Greaney, P. A.; Lu, J.; Ji, X. Nat. Energy 2019, 4, 123. |
[41] | Tie, Z.; Liu, L.; Deng, S.; Zhao, D.; Niu, Z. Angew. Chem., Int. Ed. 2020, 59, 4920. |
[42] | (a) Ye, H. Y.; Li, W.; Li, W. S. Chin. J. Org. Chem. 2012, 32, 266. (in Chinese) |
[42] | (叶怀英, 李文, 李维实, 有机化学, 2012, 32, 266.) |
[42] | (b) Shao, J. Y.; Zhong, Y. W. Chin. J. Org. Chem. 2021, 41, 1447. (in Chinese) |
[42] | (邵将洋, 钟羽武, 有机化学, 2021, 41, 1447.) |
[43] | Choudhary, S.; Gozalvez, C.; Higelin, A.; Krossing, I.; Melle- Franco, M.; Mateo-Alonso, A. Chem.-Eur. J. 2014, 20, 1525. |
[44] | Zhao, D.; Zhu, Z.; Kuo, M.-Y.; Chueh, C.-C.; Jen, A. K.-Y. Angew. Chem., Int. Ed. 2016, 55, 8999. |
[45] | Zhu, R.; Li, Q.-S.; Li, Z.-S. ACS Appl. Mater. Inter. 2020, 12, 38222. |
[46] | Zhang, L. L.; Zhao, X. S. Chem. Soc. Rev. 2009, 38, 2520. |
[47] | Kou, Y.; Xu, Y.; Guo, Z.; Jiang, D. Angew. Chem., Int. Ed. 2011, 50, 8753. |
[48] | Yan, R.; Leus, K.; Hofmann, J. P.; Antonietti, M.; Oschatz, M. Nano Energy 2020, 67, 104240. |
[49] | Manthiram, A.; Song, B.; Li, W. Energy Stor. Mater. 2017, 6, 125. |
[50] | Jerng, S. E.; Chang, B.; Shin, H.; Kim, H.; Lee, T.; Char, K.; Choi, J. W. ACS Appl. Mater. Inter. 2020, 12, 10597. |
/
〈 |
|
〉 |