综述与进展

烯烃氢氯化反应的研究进展

  • 王耀鑫 ,
  • 崔晨 ,
  • 杨小会
展开
  • 北京理工大学前沿交叉科学研究院 化学与化工学院 北京 100081

收稿日期: 2021-05-31

  修回日期: 2021-07-15

  网络出版日期: 2021-08-19

Recent Advances in Hydrochlorination of Alkenes

  • Yaoxin Wang ,
  • Chen Cui ,
  • Xiaohui Yang
Expand
  • Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081
* Corresponding author. E-mail:

Received date: 2021-05-31

  Revised date: 2021-07-15

  Online published: 2021-08-19

摘要

有机氯化物已经被广泛应用到医药、农药及材料等领域. 此外, 有机氯化物也是重要的合成砌块, 作为起始原料参与到多种反应中, 例如自由基反应、取代反应以及偶联反应等. 烯烃的氢氯化反应是合成有机氯化物最直接高效的方法之一, 在过去三十年已经取得了很多突破性的成果. 系统介绍了近三十年烯烃氢氯化反应的研究进展, 按照是否涉及金属催化, 主要分为无金属参与的氢氯化反应和金属催化的氢氯化反应. 分别着重介绍了其相应的反应类型及相关机理, 并对今后的发展方向进行了展望.

本文引用格式

王耀鑫 , 崔晨 , 杨小会 . 烯烃氢氯化反应的研究进展[J]. 有机化学, 2021 , 41(10) : 3808 -3815 . DOI: 10.6023/cjoc202105057

Abstract

Organochlorides have been widely used in medicine, pesticides, materials and other fields. In addition, organochlorides are also important synthetic building blocks. They have participated in a variety of reactions, such as free radical reactions, substitution reactions and cross-coupling reactions. The hydrochlorination of olefins is one of the most direct and efficient methods for the synthesis of organochlorides, and remakable breakthroughs have been made in the past thirty years. The research progress of olefin hydrochlorination in the past three decades is introduced. According to whether metal catalysis is involved, it is mainly classified into two categories: metal-free alkene hydrochlorination and metal-catalyzed alkene hydrochlorination. Different type of hydrochlorination reactions and related mechanisms are summarized. In addition, the future development direction of alkene hydrochlorination is prospected.

参考文献

[1]
(a) Kyne, S. H.; Lefèvre, G.; Ollivier, C.; Petit, M.; Cladera, C. A. R.; Fensterbank, L. Chem. Soc. Rev. 2020, 49, 8501.
[1]
(b) Liu, Q.; Zhang, L.; Mo, F. Acta Chim. Sinica 2020, 78, 1297. (in Chinese)
[1]
(刘谦益, 张雷, 莫凡洋, 化学学报, 2020, 78, 1297.)
[1]
(c) Togo, H. Advanced Free Radical Reactions for Organic Synthesis, Elsevier, Amsterdam, 2004.
[2]
Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry, 5th ed., Springer, New York, 2007.
[3]
For reviews, see: (a) Cheng, L.; Zhou, Q.-L. Acta Chim. Sinica 2020, 78, 1017. (in Chinese)
[3]
(程磊, 周其林, 化学学报, 2020, 78, 1017.)
[3]
(b) Zweig, J. E.; Kim, D. E.; Newhouse, T. R. Chem. Rev. 2017, 117, 11680.
[3]
(c) Liu, N.-W.; Liang, S.; Manolikakes, G. Synthesis 2016, 48, 1939.
[3]
(d) Terao, J.; Kambe, N. Acc. Chem. Res. 2008, 41, 1545.
[3]
(e) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 2656.
[3]
For select papers, see: (f) Yao, D.; Zhang, J.; Xu, L. Chin. J. Org. Chem. 2020, 40, 1673. (in Chinese)
[3]
(姚丹丹, 张金利, 徐亮, 有机化学, 2020, 40, 1673.)
[3]
(g) Ma, D.; Niu, S.; Zhao, J.; Jiang, X.; Jiang, Y.; Zhang, X.; Sun, T. Chin. J. Chem. 2017, 35, 1661.
[3]
(h) Wang, X.; Wang, S. L.; Xue, W. C.; Gong, H. G. J. Am. Chem. Soc. 2015, 137, 11562.
[3]
(i) Gong, T.; Jiang, Y.; Fu, Y. Chin. Chem. Lett. 2014, 25, 397.
[3]
(j) Atack, T. C.; Cook, S. P. J. Am. Chem. Soc. 2012, 138, 6139.
[3]
(k) Dudnik, A. S.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 10693.
[4]
(a) Kohlmeyer, C.; Schafer, A.; Huy, P. H.; Hilt, G. ACS Catal. 2020, 10, 11567.
[4]
(b) Mohite, A. R.; Phatake, R. S.; Dubey, P.; Agbaria, M.; Shames, A. I.; Lemcoff, N. G.; Reany, O. J. Org. Chem. 2020, 85, 12901.
[4]
(c) Zheng, D.; Zhou, A.; Zhu, X.; Zheng, H.; Sun, X. Chin. J. Org. Chem. 2016, 36, 137. (in Chinese)
[4]
(郑大贵, 周安西, 祝显虹, 郑洪富, 孙向前, 有机化学, 2016, 36, 137.)
[4]
(d) Huy, P. H.; Motsch, S.; Kappler, S. M. Angew. Chem., Int. Ed. 2016, 55, 10145.
[4]
(e) Vanos, C. M.; Lambert, T. H. Angew. Chem., Int. Ed. 2011, 50, 12222.
[5]
King, S. M.; Ma, X.; Herzon, S. B. J. Am. Chem. Soc. 2014, 136, 6884.
[6]
(a) Yu, P.; Bismuto, A.; Morandi, B. Angew. Chem., Int. Ed. 2020, 59, 2904.
[6]
(b) Zeng, X.; Liu, S.; Hammond, G. B.; Xu, B. ACS Catal. 2018, 8, 904.
[6]
(c) Derosa, J.; Cantu, A. L.; Boulous, M. N.; O'Duill, M. L.; Turnbull, J. L.; Liu, Z.; De La Torre, D. M.; Engle, K. M. J. Am. Chem. Soc. 2017, 139, 5183.
[6]
(d) Zeng, X.; Lu, Z.; Liu, S.; Hammond, G. B.; Xu, B. J. Org. Chem. 2017, 82, 13179.
[6]
(e) Xu, C.; Ma, C.; Xiao, F.; Chen, H. Chin. Chem. Lett. 2016, 27, 1683.
[7]
For select reviews, see: (a) Guillemard, L.; Kaplaneris, N.; Ackermann, L.; Johansson, M. J. Nat. Rev. Chem. 2021, 5, 522.
[7]
(b) Petrone, D. A.; Ye, J.; Lautens, M. Chem. Rev. 2016, 116, 8003.
[7]
(c) Liu, W.; Groves, J. T. Acc. Chem. Res. 2015, 48, 1727.
[7]
For select papers, see: (d) Fawcett, A.; Keller, M. J.; Herrera, Z.; Hartwig, J. F. Angew. Chem., Int. Ed. 2021, 60, 8276.
[7]
(e) Herron, A. N.; Liu, D.; Xia, G.; Yu, J.-Q. J. Am. Chem. Soc. 2020, 142, 2766.
[7]
(f) Zhu, Y.; Shi, J.; Yu, W. Org. Lett. 2020, 22, 8899.
[7]
(g) Li, G.; Dilger, A. K.; Cheng, P. T.; Ewing, W. R.; Groves, J. T. Angew. Chem., Int. Ed. 2018, 57, 1251.
[7]
(h) Quinn, R. K.; Kçnst, Z. A.; Michalak, S. E.; Schmidt, Y.; Szklarski, A. R.; Flores, A. R.; Nam, S.; Horne, D. A.; Vanderwal, C. D.; Alexanian, E. J. J. Am. Chem. Soc. 2016, 138, 696.
[8]
Smith, M. B.; March, J. March's Advanced Organic Chemistry, John Wiley and Sons, New York, 2001.
[9]
(a) Fahey, R. C.; McPherson, C. A. J. Am. Chem. Soc. 1971, 93, 2445.
[9]
(b) Stille, J. K.; Sonnenberg, F. M.; Kinstle, T. H. J. Am. Chem. Soc. 1966, 88, 4922.
[9]
(c) Brown, H. C.; Rei, M.-H. J. Org. Chem. 1966, 31, 1090.
[9]
(d) Dewar, M. J. S.; Fahey, R. C. J. Am. Chem. Soc. 1963, 85, 2245.
[9]
(e) Ecke, G. G.; Cook, N. C.; Whitmore, F. C. J. Am. Chem. Soc. 1950, 72, 1511.
[9]
(f) Schmerling, L. J. Am. Chem. Soc. 1946, 68, 195.
[9]
(g) Whitmore, F. C.; Johnston, F. J. Am. Chem. Soc. 1933, 55, 5020.
[10]
Onitsuka, S.; Jin, Y. Z.; Shaikh, A. C.; Furuno, H.; Inanaga, J. Molecules 2012, 17, 11469.
[11]
Jin, Y. Z.; Yasuda, N.; Furuno, H.; Inanaga, J. Tetrahedron Lett. 2003, 44, 8765.
[12]
Ballini, R.; Bosica, G.; Parrini, M. Tetrahedron Lett. 1998, 39, 7963.
[13]
(a) Kropp, P. J.; Daus, K. A.; Tubergen, M. W.; Kepler, K. D.; Wil-son, V. P.; Craig, S. L.; Baillargeon, M. M.; Breton, G. W. J. Am. Chem. Soc. 1993, 115, 3071.
[13]
(b) Kropp, P. J.; Daus, K. A.; Crawford, S. D.; Tubergen, M. W.; Kepler, K. D.; Craig, S. L.; Wilson, V. P. J. Am. Chem. Soc. 1990, 112, 7433.
[14]
de Mattos, M. C. S.; Sanseverino, A. M. Synth. Commun. 2001, 30, 1975.
[15]
Tanemura, K. Tetrahedron Lett. 2018, 59, 4293.
[16]
Boudjouk, P.; Kim, B. K.; Han, B. H. Synth. Commun. 1996, 26, 3479.
[17]
Yadav, V. K.; Babu, K. G. Eur. J. Org. Chem. 2005, 2005, 452.
[18]
Liang, S.; Hammond, G. B.; Xu, B. Green. Chem. 2018, 20, 680.
[19]
Schevenels, F. T.; Shen, M.; Snyder, S. A. J. Am. Chem. Soc. 2017, 139, 6329.
[20]
Wilger, D. J.; Grandjean, J. M. M.; Lamment, T. R.; Nicewicz, D. A. Nat. Chem. 2014, 6, 720.
[21]
Alper, H.; Huang, Y. Organometallics 1991, 10, 1665.
[22]
Fahey, R. C.; Monahan, M. W.; Mcphersons, C. A. J. Am. Chem. Soc. 1970, 92, 2816.
[23]
Podhajsky, S. M.; Sigman, M. S. Organometallics. 2007, 26, 5680.
[24]
Gaspar, B.; Carreira, E. M. Angew. Chem., Int. Ed. 2008, 47, 5758.
[25]
Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2006, 128, 11693.
文章导航

/