综述与进展

质子耦合电子转移在有机合成中的应用

  • 周子杰 ,
  • 孔祥梅 ,
  • 刘天飞
展开
  • a 南开大学元素有机化学国家重点实验室 天津 300071
    b 中国科学院上海有机化学研究所有机氟化学重点实验室 上海 200032

收稿日期: 2021-06-01

  修回日期: 2021-07-22

  网络出版日期: 2021-08-25

基金资助

南开大学人事人才支持资助项目

Applications of Proton-Coupled Electron Transfer in Organic Synthesis

  • Zijie Zhou ,
  • Xiangmei Kong ,
  • Tianfei Liu
Expand
  • a State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071
    b Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
* Corresponding author. E-mail:

Received date: 2021-06-01

  Revised date: 2021-07-22

  Online published: 2021-08-25

Supported by

Startup Fund from Nankai University

摘要

质子耦合电子转移(PCET)是一类非传统的氧化还原反应, 因其电子和质子转移过程具有独特的相互依赖性, 这类反应表现出特殊的反应性和选择性. PCET反应在包括天然和人工系统的氧化还原过程中, 如小分子活化等, 起到了相当关键的作用. 最近, PCET反应在有机合成中的应用引起了广泛的关注和兴趣. 人们实现了通过PCET机理的X—H键(如C—H键、N—H键、S—H键和O—H键等)的活化, 基于该过程合成了多种重要结构和基础骨架、获得了不同的合成砌块和天然产物. 此外, 通过PCET反应机理, 人们不仅获得了C=Y键等多重键的还原产物, 而且获得了底物之间的偶联产物. 综述了近年来PCET在有机合成中的应用和发展, 并且对该领域未来的发展进行了展望.

本文引用格式

周子杰 , 孔祥梅 , 刘天飞 . 质子耦合电子转移在有机合成中的应用[J]. 有机化学, 2021 , 41(10) : 3844 -3879 . DOI: 10.6023/cjoc202106001

Abstract

Proton-coupled electron transfer (PCET) reactions are a kind of unconventional redox reactions, which exhibit special reactivities and selectivities due to their unique interdependent electron-proton transfer mechanisms. There are three possible pathways of PCET processes, including stepwise electron transfer followed by proton transfer (ETPT), proton transfer followed by electron transfer (PTET), and concerted pathway in which electron and proton transfer synchronously (CEPT), avoiding intermediates with high energy. These reactions have been playing a key role in numerous areas in organic chemistry, inorganic chemistry, bioorganic chemistry, organometallic and material chemistry, including the redox processes in natural and artificial systems, such as the activation for small molecules. Recently, the application of PCET reactions in organic synthesis has received a great deal of attentions and interests. Being accompanied by the development of electrochemical methods and photocatalysts, more and more novel reactions in electrochemistry and photochemistry involve PCET processes have been reported. Applying these electrochemical and photochemical methods, the activation of X—H bond has been achieved via PCET processes, including C—H bond, N—H bond, P—H bond, S—H bond or O—H bond. Thus, based on these crucial processes, a number of vital structures and fundamental frameworks can be synthesized, and various synthetic building blocks and natural products have been attained. For example, pharmaceutical building blocks like 2°-piperidines can be cyanated at their α-position; substituted dimeric pyrroloindolines such as (–)-calycanthidine, (–)-chimonanthine, and (–)-psychotriasine have also been successfully synthesized via PCET mechanism. Moreover, not only the products of reduction of multiple bonds (C=Y bond such as C=C bond, C=N bond and C=O bond), but also the products of self/cross-coupling have been achieved via PCET mechanism. In this review, the recent applications and developments of PCET mechanism in organic synthesis are summarized, including new catalyst systems and new reagents, especially with electrochemical and photochemical methodologies. The future of this area has also been demonstrated from both experimental and theoretical aspects.

参考文献

[1]
Hammes-Schiffer, S.; Iordanova, N. Biochim. Biophys. Acta 2004, 1655, 29.
[2]
Hammes-Schiffer, S. Acc. Chem. Res. 2009, 42, 1881.
[3]
Mayer, J. M. Annu. Rev. Phys. Chem. 2004, 55, 363.
[4]
Mayer, J. M.; Rhile, I. J. Biochim. Biophys. Acta 2004, 1655, 51.
[5]
Rhile, I. J.; Markle, T. F.; Nagao, H.; DiPasquale, A. G.; Lam, O. P.; Lockwood, M. A.; Rotter, K.; Mayer, J. M. J. Am. Chem. Soc. 2006, 128, 6075.
[6]
Tyburski, R.; Liu, T.; Glover, S. D.; Hammarström, L. J. Am. Chem. Soc. 2021, 143, 560.
[7]
Gentry, E. C.; Knowles, R. R. Acc. Chem. Res. 2016, 49, 1546.
[8]
Yang, J.-D.; Ji, P.; Xue, X.-S.; Cheng, J.-P. J. Am. Chem. Soc. 2018, 140, 8611.
[9]
Wu, X.; Zhu, C. Chin. J. Chem. 2019, 37, 171.
[10]
Symes, M. D.; Surendranath, Y.; Lutterman, D. A.; Nocera, D. G. J. Am. Chem. Soc. 2011, 133, 5174.
[11]
Guo, Y.; Liu, Y.; Qi, J.; Li, H.; He, L.; Lu, L.; Liu, C.; Gong, L.; Zhao, D.; Yang, Z. Acta Chim. Sinica 2017, 75, 914. (in Chinese)
[11]
(郭宇, 刘瑜, 戚娟娟, 李慧, 赫兰兰, 卢丽男, 刘翠, 宫利东, 赵东霞, 杨忠志, 化学学报, 2017, 75, 914.)
[12]
Odella, E.; Mora, S. J.; Wadsworth, B. L.; Huynh, M. T.; Goings, J. J.; Liddell, P. A.; Groy, T. L.; Gervaldo, M.; Sereno, L. E.; Gust, D.; Moore, T. A.; Moore, G. F.; Hammes-Schiffer, S.; Moore, A. L. J. Am. Chem. Soc. 2018, 140, 15450.
[13]
Liu, T.; Guo, M.; Orthaber, A.; Lomoth, R.; Lundberg, M.; Ott, S.; Hammarström, L. Nat. Chem. 2018, 10, 881.
[14]
Liu, T.; Tyburski, R.; Wang, S.; Fernandez-Teran, R.; Ott, S.; Hammarström, L. J. Am. Chem. Soc. 2019, 141, 17245.
[15]
Bourrez, M.; Steinmetz, R.; Ott, S.; Gloaguen, F.; Hammarström, L. Nat. Chem. 2015, 7, 140.
[16]
Jackson, M. N.; Pegis, M. L.; Surendranath, Y. ACS Cent. Sci. 2019, 5, 831.
[17]
Wenger, O. S. Chem.-Eur. J. 2011, 17, 11692.
[18]
Wenger, O. S. Acc. Chem. Res. 2013, 46, 1517.
[19]
Chen, Z.; Wang, T.; Sun, T.; Chen, Z.; Sheng, T.; Hong, Y.-H.; Nan, Z.-A.; Zhu, J.; Zhou, Z.-Y.; Xia, H.; Sun, S.-G. Chin. J. Chem. 2018, 36, 1161.
[20]
Binstead, R. A.; Moyer, B. A.; Samuels, G. J.; Meyer, T. J. J. Am. Chem. Soc. 1981, 103, 2897.
[21]
Liu, F.; Concepcion, J. J.; Jurss, J. W.; Cardolaccia, T.; Templeton, J. L.; Meyer, T. J. Inorg. Chem. 2008, 47, 1727.
[22]
Bonin, J.; Robert, M. Photochem. Photobiol. 2011, 87, 1190.
[23]
Hoffmann, N. Eur. J. Org. Chem. 2017, 2017, 1982.
[24]
Hammes-Schiffer, S.; Soudackov, A. V. J. Phys. Chem. B 2008, 112, 14108.
[25]
Sanderson, R. T. Polar Covalence, Academic Press, New York, 1983, p. 46.
[26]
Sanderson, R. T. Chemical Bonds and Bond Energy, Academic Press, New York, 1976, p. 185.
[27]
Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265.
[28]
Bolton, J. R.; Archer, M. D. In Electron Transfer in Inorganic, Organic, and Biological Systems, American Chemical Society, Washington, 1991, pp. 7-23.
[29]
Marcus, R. A. J. Chem. Phys. 1956, 24, 966.
[30]
Borgis, D.; Hynes, J. T. J. Phy. Chem. 1996, 100, 1118.
[31]
Krishtalik, L. I. Biochim. Biophys. Acta 2000, 1458, 6.
[32]
Soudackov, A.; Hammes-Schiffer, S. J. Chem. Phys. 1999, 111, 4672.
[33]
Soudackov, A.; Hammes-Schiffer, S. J. Chem. Phys. 2000, 113, 2385.
[34]
Hammes-Schiffer, S.; Stuchebrukhov, A. A. Chem. Rev. 2010, 110, 6939.
[35]
Huynh, M. H. V.; Meyer, T. J. Chem. Rev. 2007, 107, 5004.
[36]
Warren, J. J.; Tronic, T. A.; Mayer, J. M. Chem. Rev. 2010, 110, 6961.
[37]
Weinberg, D. R.; Gagliardi, C. J.; Hull, J. F.; Murphy, C. F.; Kent, C. A.; Westlake, B. C.; Paul, A.; Ess, D. H.; McCafferty, D. G.; Meyer, T. J. Chem. Rev. 2012, 112, 4016.
[38]
Waidmann, C. R.; Miller, A. J. M.; Ng, C.-W. A.; Scheuermann, M. L.; Porter, T. R.; Tronic, T. A.; Mayer, J. M. Energy Environ. Sci. 2012, 5, 7771.
[39]
Darcy, J. W.; Koronkiewicz, B.; Parada, G. A.; Mayer, J. M. Acc. Chem. Res. 2018, 51, 2391.
[40]
Morton, C. M.; Zhu, Q.; Ripberger, H.; Troian-Gautier, L.; Toa, Z. S. D.; Knowles, R. R.; Alexanian, E. J. J. Am. Chem. Soc. 2019, 141, 13253.
[41]
Tarantino, K. T.; Liu, P.; Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 10022.
[42]
Skone, J. H.; Soudackov, A. V.; Hammes-Schiffer, S. J. Am. Chem. Soc. 2006, 128, 16655.
[43]
Liu, T.; Tyburski, R.; Wang, S.; Fernández-Terán, R.; Ott, S.; Hammarström, L. J. Am. Chem. Soc. 2019, 141, 17245.
[44]
Huang, T.; Rountree, E. S.; Traywick, A. P.; Bayoumi, M.; Dempsey, J. L. J. Am. Chem. Soc. 2018, 140, 14655.
[45]
Darcy, J. W.; Kolmar, S. S.; Mayer, J. M. J. Am. Chem. Soc. 2019, 141, 10777.
[46]
Zhang, J.; Yang, J.-D.; Cheng, J.-P. Chem. Sci. 2020, 11, 3672.
[47]
Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J. Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
[48]
Giri, R.; Shi, B. F.; Engle, K. M.; Maugel, N.; Yu, J. Q. Chem. Soc. Rev. 2009, 38, 3242.
[49]
Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788.
[50]
Sun, C. L.; Li, B. J.; Shi, Z. J. Chem. Rev. 2011, 111, 1293.
[51]
Markle, T. F.; Darcy, J. W.; Mayer, J. M. Sci. Adv. 2018, 4, eaat5776.
[52]
Sayfutyarova, E. R.; Goldsmith, Z. K.; Hammes-Schiffer, S. J. Am. Chem. Soc. 2018, 140, 15641.
[53]
Sayfutyarova, E. R.; Lam, Y. C.; Hammes-Schiffer, S. J. Am. Chem. Soc. 2019, 141, 15183.
[54]
Uraguchi, D.; Torii, M.; Ooi, T. ACS Catal. 2017, 7, 2765.
[55]
Shevchenko, G. A.; Oppelaar, B.; List, B. Angew. Chem., Int. Ed. 2018, 57, 10756.
[56]
Leng, L.; Ready, J. M. ACS Catal. 2020, 10, 13196.
[57]
Wu, Z. J.; Xu, H. C. Angew. Chem., Int. Ed. 2017, 56, 4734.
[58]
Lennox, A. J. J.; Goes, S. L.; Webster, M. P.; Koolman, H. F.; Djuric, S. W.; Stahl, S. S. J. Am. Chem. Soc. 2018, 140, 11227.
[59]
Zhang, Z.; Zhang, L.; Cao, Y.; Li, F.; Bai, G.; Liu, G.; Yang, Y.; Mo, F. Org. Lett. 2019, 21, 762.
[60]
Sharma, S.; Roy, A.; Shaw, K.; Bisai, A.; Paul, A. J. Org. Chem. 2020, 85, 14926.
[61]
He, M. X.; Mo, Z. Y.; Wang, Z. Q.; Cheng, S. Y.; Xie, R. R.; Tang, H. T.; Pan, Y. M. Org. Lett. 2020, 22, 724.
[62]
Tanwar, L.; Borgel, J.; Ritter, T. J. Am. Chem. Soc. 2019, 141, 17983.
[63]
Wang, Z.; Liu, Q.; Ji, X.; Deng, G.-J.; Huang, H. ACS Catal. 2019, 10, 154.
[64]
Wu, Y.; Chen, J.-Y.; Ning, J.; Jiang, X.; Deng, J.; Deng, Y.; Xu, R.; He, W.-M. Green Chem. 2021, 23, 3950.
[65]
Peng, S.; Lin, Y.; He, W.-M. Chin. J. Org. Chem. 2020, 40, 541. (in Chinese)
[65]
(彭莎, 林英武, 何卫民, 有机化学, 2020, 40, 541.)
[66]
Luo, Y. R. Handbook of Bond Dissociation Energies in Organic Compounds, CRC Press, Boca Raton, 2003.
[67]
Choi, G. J.; Knowles, R. R. J. Am. Chem. Soc. 2015, 137, 9226.
[68]
Miller, D. C.; Choi, G. J.; Orbe, H. S.; Knowles, R. R. J. Am. Chem. Soc. 2015, 137, 13492.
[69]
Tarantino, K. T.; Miller, D. C.; Callon, T. A.; Knowles, R. R. J. Am. Chem. Soc. 2015, 137, 6440.
[70]
Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Nature 2016, 539, 268.
[71]
Gentry, E. C.; Rono, L. J.; Hale, M. E.; Matsuura, R.; Knowles, R. R. J. Am. Chem. Soc. 2018, 140, 3394.
[72]
Zhu, Q.; Graff, D. E.; Knowles, R. R. J. Am. Chem. Soc. 2018, 140, 741.
[73]
Nguyen, S. T.; Zhu, Q.; Knowles, R. R. ACS Catal. 2019, 9, 4502.
[74]
Roos, C. B.; Demaerel, J.; Graff, D. E.; Knowles, R. R. J. Am. Chem. Soc. 2020, 142, 5974.
[75]
Zhou, Z.; Li, Y.; Han, B.; Gong, L.; Meggers, E. Chem. Sci. 2017, 8, 5757.
[76]
Yuan, W.; Zhou, Z.; Gong, L.; Meggers, E. Chem. Commun. 2017, 53, 8964.
[77]
Jia, J.; Ho, Y. A.; Bulow, R. F.; Rueping, M. Chem.-Eur. J. 2018, 24, 14054.
[78]
Moon, Y.; Jang, E.; Choi, S.; Hong, S. Org. Lett. 2018, 20, 240.
[79]
Zheng, S.; Gutierrez-Bonet, A.; Molander, G. A. Chem 2019, 5, 339.
[80]
Zhou, C.; Lei, T.; Wei, X. Z.; Ye, C.; Liu, Z.; Chen, B.; Tung, C. H.; Wu, L. Z. J. Am. Chem. Soc. 2020, 142, 16805.
[81]
Zhu, L.; Xiong, P.; Mao, Z. Y.; Wang, Y. H.; Yan, X.; Lu, X.; Xu, H. C. Angew. Chem., Int. Ed. 2016, 55, 2226.
[82]
Xiong, P.; Xu, H. H.; Xu, H. C. J. Am. Chem. Soc. 2017, 139, 2956.
[83]
Hu, X.; Zhang, G.; Bu, F.; Nie, L.; Lei, A. ACS Catal. 2018, 8, 9370.
[84]
Wang, F.; Gerken, J. B.; Bates, D. M.; Kim, Y. J.; Stahl, S. S. J. Am. Chem. Soc. 2020, 142, 12349.
[85]
Xu, Z.; Huang, Z.; Li, Y.; Kuniyil, R.; Zhang, C.; Ackermann, L.; Ruan, Z. Green Chem. 2020, 22, 1099.
[86]
Taylor, R. J. K.; Reid, M.; Foot, J.; Raw, S. A. Acc. Chem. Res. 2005, 38, 851.
[87]
Uyanik, M.; Ishihara, K. Chem. Commun. 2009, 2086.
[88]
Ciriminna, R.; Pagliaro, M. Org. Process Res. Dev. 2010, 14, 245-251.
[89]
Hoover, J. M.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 16901.
[90]
Greene, J. F.; Hoover, J. M.; Mannel, D. S.; Root, T. W.; Stahl, S. S. Org. Process Res. Dev. 2013, 17, 1247.
[91]
Rahimi, A.; Azarpira, A.; Kim, H.; Ralph, J.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 6415.
[92]
Steves, J. E.; Preger, Y.; Martinelli, J. R.; Welch, C. J.; Root, T. W.; Hawkins, J. M.; Stahl, S. S. Org. Process Res. Dev. 2015, 19, 1548.
[93]
Rafiee, M.; Konz, Z. M.; Graaf, M. D.; Koolman, H. F.; Stahl, S. S. ACS Catal. 2018, 8, 6738.
[94]
Rafiee, M.; Alherech, M.; Karlen, S. D.; Stahl, S. S. J. Am. Chem. Soc. 2019, 141, 15266.
[95]
Ota, E.; Wang, H.; Frye, N. L.; Knowles, R. R. J. Am. Chem. Soc. 2019, 141, 1457.
[96]
Zhao, K.; Yamashita, K.; Carpenter, J. E.; Sherwood, T. C.; Ewing, W. R.; Cheng, P. T. W.; Knowles, R. R. J. Am. Chem. Soc. 2019, 141, 8752.
[97]
Nguyen, S. T.; Murray, P. R. D.; Knowles, R. R. ACS Catal. 2019, 10, 800.
[98]
Huang, L.; Ji, T.; Rueping, M. J. Am. Chem. Soc. 2020, 142, 3532.
[99]
Tsui, E.; Metrano, A. J.; Tsuchiya, Y.; Knowles, R. R. Angew. Chem., Int. Ed. 2020, 59, 11845.
[100]
Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
[101]
Piou, T.; Rovis, T. Nature 2015, 527, 86.
[102]
Bayeh, L.; Le, P. Q.; Tambar, U. K. Nature 2017, 547, 196.
[103]
Koh, M. J.; Nguyen, T. T.; Lam, J. K.; Torker, S.; Hyvl, J.; Schrock, R. R.; Hoveyda, A. H. Nature 2017, 542, 80.
[104]
Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079.
[105]
Xi, Y.; Dong, B.; McClain, E. J.; Wang, Q.; Gregg, T. L.; Akhmedov, N. G.; Petersen, J. L.; Shi, X. Angew. Chem., Int. Ed. 2014, 53, 4657.
[106]
Hopkinson, M. N.; Tlahuext-Aca, A.; Glorius, F. Acc. Chem. Res. 2016, 49, 2261.
[107]
Patel, M.; Saunthwal, R. K.; Verma, A. K. Acc. Chem. Res. 2017, 50, 240.
[108]
Wang, J.; Zhang, S.; Xu, C.; Wojtas, L.; Akhmedov, N. G.; Chen, H.; Shi, X. Angew. Chem., Int. Ed. 2018, 57, 6915.
[109]
Wang, H.; Li, Y.; Tang, Z.; Wang, S.; Zhang, H.; Cong, H.; Lei, A. ACS Catal. 2018, 8, 10599.
[110]
Liu, Y.; Chen, X. L.; Li, X. Y.; Zhu, S. S.; Li, S. J.; Song, Y.; Qu, L. B.; Yu, B. J. Am. Chem. Soc. 2021, 143, 964.
[111]
Kuss-Petermann, M.; Wenger, O. S. J. Phys. Chem. Lett. 2013, 4, 2535.
[112]
Griesbaum, K. Angew. Chem., Int. Ed. 1970, 9, 273.
[113]
Heiba, E.-A. I.; Dessau, R. M. J. Org. Chem. 1967, 32, 3837.
[114]
Huyser, E. S.; Kellogg, R. M. J. Org. Chem. 1966, 31, 3366.
[115]
Zhao, R.; Lind, J.; Merenyi, G.; Eriksen, T. E. J. Am. Chem. Soc. 1994, 116, 12010.
[116]
Dang, H.-S.; Roberts, B. P. Tetrahedron Lett. 1999, 40, 8929.
[117]
Fujisawa, H.; Hayakawa, Y.; Sasaki, Y.; Mukaiyama, T. Chem. Lett. 2001, 30, 632.
[118]
Benati, L.; Leardini, R.; Minozzi, M.; Nanni, D.; Scialpi, R.; Spagnolo, P.; Strazzari, S.; Zanardi, G. Angew. Chem., Int. Ed. 2004, 43, 3598.
[119]
Kemper, J.; Studer, A. Angew. Chem., Int. Ed. 2005, 44, 4914.
[120]
Dénès, F.; Pichowicz, M.; Povie, G.; Renaud, P. Chem. Rev. 2014, 114 2587.
[121]
Qvortrup, K.; Rankic, D. A.; MacMillan, D. W. J. Am. Chem. Soc. 2014, 136, 626.
[122]
Hager, D.; MacMillan, D. W. J. Am. Chem. Soc. 2014, 136, 16986.
[123]
Tyson, E. L.; Niemeyer, Z. L.; Yoon, T. P. J. Org. Chem. 2014, 79, 1427.
[124]
He, W.-B.; Gao, L.-Q.; Chen, X.-J.; Wu, Z.-L.; Huang, Y.; Cao, Z.; Xu, X.-H.; He, W.-M. Chin. Chem. Lett. 2020, 31, 1895.
[125]
Li, J.; Gu, Z.; Zhao, X.; Qiao, B.; Jiang, Z. Chem. Commun. 2019, 55, 12916.
[126]
Liu, X.; Yin, Y.; Jiang, Z. Chem. Commun. 2019, 55, 11527.
[127]
Yang, H.; Wei, G.; Jiang, Z. ACS Catal. 2019, 9, 9599.
[128]
Zeng, G.; Li, Y.; Qiao, B.; Zhao, X.; Jiang, Z. Chem. Commun. 2019, 55, 11362.
[129]
Shi, J.; Wei, W. Chin. J. Org. Chem. 2020, 40, 2170. (in Chinese)
[129]
(时建伟, 魏伟, 有机化学, 2020, 40 2170.)
[130]
Prasanna, R.; Guha, S.; Sekar, G. Org. Lett. 2019, 21, 2650.
[131]
Kong, M.; Tan, Y.; Zhao, X.; Qiao, B.; Tan, C. H.; Cao, S.; Jiang, Z. J. Am. Chem. Soc. 2021, 143, 4024.
[132]
Li, J.; He, L.; Liu, X.; Cheng, X.; Li, G. Angew. Chem., Int. Ed. 2019, 58, 1759.
[133]
Zimmerman, H. E. Acc. Chem. Res. 2012, 45, 164.
[134]
Benkeser, R. A.; Kaiser, E. M. J. Am. Chem. Soc. 1963, 85, 2858.
[135]
Swenson, K. E.; Zemach, D.; Nanjundiah, C.; Kariv-Miller, E. J. Org. Chem. 1983, 48, 1777.
[136]
Chaussard, J.; Combellas, C.; Thiebault, A. Tetrahedron Lett. 1987, 28, 1173.
[137]
Zhou, F.; Jehoulet, C.; Bard, A. J. J. Am. Chem. Soc. 1992, 114, 11004.
[138]
Ishifune, M.; Yamashita, H.; Kera, Y.; Yamashita, N.; Hirata, K.; Murase, H.; Kashimura, S. Electrochim. Acta 2003, 48, 2405.
[139]
Peters, B. K.; Rodriguez, K. X.; Reisberg, S. H.; Beil, S. B.; Hickey, D. P.; Kawamata, Y.; Collins, M.; Starr, J.; Chen, L.; Udyavara, S.; Klunder, K.; Gorey, T. J.; Anderson, S. L.; Neurock, M.; Minteer, S. D.; Baran, P. S. Science 2019, 363, 838.
[140]
Qin, Y.; Lu, J.; Zou, Z.; Hong, H.; Li, Y.; Li, Y.; Chen, L.; Hu, J.; Huang, Y. Org. Chem. Front. 2020, 7, 1817.
[141]
Liu, X.; Liu, R.; Qiu, J.; Cheng, X.; Li, G. Angew. Chem., Int. Ed. 2020, 59, 13962.
[142]
Rossolini, T.; Leitch, J. A.; Grainger, R.; Dixon, D. J. Org. Lett. 2018, 20, 6794.
[143]
Vasu, D.; Fuentes de Arriba, A. L.; Leitch, J. A.; de Gombert, A.; Dixon, D. J. Chem. Sci. 2019, 10, 3401.
[144]
Nicastri, M. C.; Lehnherr, D.; Lam, Y. H.; DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2020, 142, 987.
[145]
Lehnherr, D.; Lam, Y. H.; Nicastri, M. C.; Liu, J.; Newman, J. A.; Regalado, E. L.; DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2020, 142, 468.
[146]
Chen, M.; Zhao, X.; Yang, C.; Xia, W. Org. Lett. 2017, 19, 3807.
[147]
Cao, K.; Tan, S. M.; Lee, R.; Yang, S.; Jia, H.; Zhao, X.; Qiao, B.; Jiang, Z. J. Am. Chem. Soc. 2019, 141, 5437.
[148]
Huang, B.; Li, Y.; Yang, C.; Xia, W. Chem. Commun. 2019, 55, 6731.
[149]
Nageswar Rao, D.; Rasheed, S.; Raina, G.; Ahmed, Q. N.; Jaladanki, C. K.; Bharatam, P. V.; Das, P. J. Org. Chem. 2017, 82, 7234.
[150]
Zhang, G.; Fu, L.; Chen, P.; Zou, J.; Liu, G. Org. Lett. 2019, 21, 5015.
[151]
Li, H; Zhang, M. T. Angew. Chem., Int. Ed. 2016, 55, 13132.
[152]
Schrauben, J. N.; Cattaneo, M.; Day, T. C.; Tenderholt, A. L.; Mayer, J. M. J. Am. Chem. Soc. 2012, 134, 16635.
[153]
Sirimanne, C. T.; Kerrigan, M. M.; Martin, P. D.; Kanjolia, R. K.; Elliott, S. D.; Winter, C. H. Inorg. Chem. 2015, 54, 7.
[154]
Canteenwala, T.; Padmawar, P. A.; Chiang, L. Y. J. Am. Chem. Soc. 2005, 127, 26.
[155]
Irebo, T.; Reece, S. Y.; Sjödin, M.; Nocera, D. G.; Hammarström, L. J. Am. Chem. Soc. 2007, 129, 15462.
[156]
Pizano, A. A.; Yang, J. L.; Nocera, D. G. Chem. Sci. 2012, 3, 2457.
[157]
Kuss-Petermann, M.; Wolf, H.; Stalke, D.; Wenger, O. S. J. Am. Chem. Soc. 2012, 134, 12844.
[158]
Kuss-Petermann, M.; Wenger, O. S. J. Phys. Chem. A 2013, 117, 5726.
[159]
Chen, J.; Kuss-Petermann, M.; Wenger, O. S. Chem.-Eur. J. 2014, 20, 4098.
[160]
Bronner, C.; Wenger, O. S. Phys. Chem. Chem. Phys. 2014, 16 3617.
[161]
Bowring, M. A.; Bradshaw, L. R.; Parada, G. A.; Pollock, T. P.; Fernández-Terán, R. J.; Kolmar, S. S.; Mercado, B. Q.; Schlenker, C. W.; Gamelin, D. R.; Mayer, J. M. J. Am. Chem. Soc. 2018, 140, 7449.
[162]
Sayfutyarova, E. R.; Hammes-Schiffer, S. J. Phys. Chem. Lett. 2020, 11, 7109.
[163]
Eisenhart, T. T.; Dempsey, J. L. J. Am. Chem. Soc. 2014, 136, 12221.
[164]
Swords, W. B.; Meyer, G. J.; Hammarström, L. Chem. Sci. 2020, 11, 3460.
[165]
Lennox, J. C.; Kurtz, D. A.; Huang, T.; Dempsey, J. L. ACS Energy Lett. 2017, 2, 1246.
[166]
Parada, G. A.; Goldsmith, Z. K.; Kolmar, S.; Pettersson Rimgard, B.; Mercado, B. Q.; Hammarström, L.; Hammes-Schiffer, S.; Mayer, J. M. Science 2019, 364, 471.
[167]
Guo, J. D.; Yang, X. L.; Chen, B.; Tung, C. H.; Wu, L. Z. Org. Lett. 2020, 22, 9627.
[168]
Lei, T.; Liang, G.; Cheng, Y. Y.; Chen, B.; Tung, C. H.; Wu, L. Z. Org. Lett. 2020, 22, 5385.
[169]
Wang, J. H.; Li, X. B.; Li, J.; Lei, T.; Wu, H. L.; Nan, X. L.; Tung, C. H.; Wu, L. Z. Chem. Commun. 2019, 55, 10376.
[170]
Wang, J. H.; Lei, T.; Nan, X. L.; Wu, H. L.; Li, X. B.; Chen, B.; Tung, C. H.; Wu, L. Z. Org. Lett. 2019, 21, 5581.
[171]
Huang, C.; Wang, J. H.; Qiao, J.; Fan, X. W.; Chen, B.; Tung, C. H.; Wu, L. Z. J. Org. Chem. 2019, 84, 12904.
[172]
Li, H.; Guo, Y. H.; Wu, J. Y.; Zhang, M. T. Chem. Commun. 2019, 55, 3465.
[173]
Chen, J.; Chen, J.; Liu, Y.; Zheng, Y.; Zhu, Q.; Han, G.; Shen, J.-R. J. Phys. Chem. Lett. 2019, 10, 3240.
[174]
Ren, X.; Wang, X.; Sun, Y.; Chi, X.; Mangel, D.; Wang, H.; Sessler, J. L. Org. Chem. Front. 2019, 6, 584.
[175]
Lin, Y.; Yan, Y.; Peng, W.; Qiao, X.; Huang, D.; Ji, H.; Chen, C.; Ma, W.; Zhao, J. J. Phys. Chem. Lett. 2020, 11, 3941.
[176]
Zhang, X.; Ma, J.; Li, S.; Li, M.-D.; Guan, X.; Lan, X.; Zhu, R.; Phillips, D. L. J. Org. Chem. 2016, 81, 5330.
[177]
Xu, Y.; Bao, P.; Song, K.; Shi, Q. J. Comput. Chem. 2019, 40, 1005.
[178]
Zhong, W.; Wu, L.; Jiang, W.; Li, Y.; Mookan, N.; Liu, X. Dalton Trans. 2019, 48, 13711.
[179]
Giret, Y.; Guo, P.; Wang, L.-F.; Cheng, J. J. Chem. Phys. 2020, 152, 124705.
[180]
Song, K.; Shi, Q. J. Chem. Phys. 2017, 146, 184108.
文章导航

/