研究论文

银催化的硅烷氧基炔和羰基化合物的[2+2]环加成机理:硅正离子迁移主导的过程

  • 王恒定 ,
  • 江凌 ,
  • 梁鸿雁 ,
  • 樊红军
展开
  • a 中国科学院大连化学物理研究所 分子反应动力学国家重点实验室 辽宁大连 116023
    b 中国科学院大学 北京 100864
    c 西宁特钢技术中心 西宁 810005

收稿日期: 2021-06-22

  修回日期: 2021-08-04

  网络出版日期: 2021-08-25

基金资助

国家重点研发计划(2016YFB0600301); 国家自然科学基金(92061114); 国家自然科学基金(21873096); 中科院战略先导计划(XDB17010200)

Mechanism of Silver-Catalyzed [2+2] Cycloaddition between Siloxy-Alkynes and Carbonyl Compound: A Silylium Ion Migration Approach

  • Hengding Wang ,
  • Ling Jiang ,
  • Hongyan Liang ,
  • Hongjun Fan
Expand
  • a State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023
    b University of Chinese Academy of Sciences, Beijing 100864
    c Technical Center, Xining Special Steel Co Ltd., Xining 810005
* Corresponding author. E-mail:

Received date: 2021-06-22

  Revised date: 2021-08-04

  Online published: 2021-08-25

Supported by

National Key Research and Development Program of China(2016YFB0600301); National Natural Science Foundation of China(92061114); National Natural Science Foundation of China(21873096); Strategic Priority Research Program of Chinese Academy of Sciences(XDB17010200)

摘要

银离子可以高效地催化硅烷氧基炔与α,β-不饱和羰基化合物之间的[2+2]环加成反应, 在银离子催化下硅烷氧基炔可以与甲醛的羰基发生[2+2]环加成后开环生成不饱和酯. 利用密度泛函理论(DFT)计算发现, 在这两个反应中银离子与硅烷氧基炔之间相互作用, 将硅烷氧基炔激活成为硅正离子和银烯酮, 硅正离子进一步催化羰基化合物(α,β-不饱和羰基化合物或者醛)和银烯酮之间的[2+2]环加成反应.

本文引用格式

王恒定 , 江凌 , 梁鸿雁 , 樊红军 . 银催化的硅烷氧基炔和羰基化合物的[2+2]环加成机理:硅正离子迁移主导的过程[J]. 有机化学, 2021 , 41(11) : 4327 -4337 . DOI: 10.6023/cjoc202106038

Abstract

Mechanism of silver-catalyzed [2+2] cycloaddition between siloxy-alkynes and α,β-unsaturated carbonyl compound remains controversial. Based on density functional theory (DFT) calculation, it is revealed that Ag+ activate siloxy-alkyne into silver-ketene and silylium ion (TIPS+) in this reaction. TIPS+ then promote [2+2] cycloaddition between α,β-unsaturated carbonyl compound and silver-ketene to form cyclobutane-intermediate, which undergos TIPS+ migration and transforms into final product. The mechanism of Ag+ catalyzed olefination of aldehydes using siloxy-alkynes was also investigated, the results showed that TIPS+ migration also took place in this reaction. In the two reactions studied, Ag+ interacts with π-bond of siloxy-alkynes and triggers TIPS+ migration, which offers alternative solution to silylium-catalyzed reaction. As similarity of ynolates, silver-ketenes are more stable, which can undergo 1,4-nucleophilic addition with α,β- unsaturated compound. For [2+2] cycloaddition, catalytic variant is rather limited, this work provides a different perspective to obtain four-membered ring products or its ring-open derivates.

参考文献

[1]
Hoffmann, R.; Woodward, R. B. Acc. Chem. Res. 1968, 1, 17.
[2]
(a) Xu, C.-H.; Li, Y.; Li, J.-H.; Xiang, J.-N.; Deng, W. Sci. China: Chem. 2019, 62, 1463.
[2]
(b) Liu, Y.; Bandini, M. Chin. J. Chem. 2019, 37, 431.
[2]
(c) Li, Y.; Jin, G.-F.; An, Y.-Y.; Das, R.; Han, Y.-F. Chin. J. Chem. 2019, 37, 1147.
[2]
(d) Zhang, R.; Yuan, Y.; Qiu, Z.; Xie, Z. Chin. J. Chem. 2018, 36, 273.
[2]
(e) Li, K.; Bai, L.; Luan, X. Chin. J. Org. Chem. 2019, 39, 2211. (in Chinese)
[2]
(李锟雨, 白璐, 栾新军, 有机化学, 2019, 39, 2211.)
[2]
(f) Li, Z.; Jian, H.; Wang, W.; Wang, Q.; He, L. Chin. J. Org. Chem. 2018, 38, 2045. (in Chinese)
[2]
(李志娟, 翦辉, 王伟华, 王强, 何林, 有机化学, 2018, 38, 2045.)
[2]
(g) Zhao, L.; Tong, X.; Zhu, H.; Yang, D.; Fan, M. Chin. J. Org. Chem. 2017, 37, 646. (in Chinese)
[2]
(赵立芳, 同晓娟, 祝海涛, 杨得锁, 凡明锦, 有机化学, 2017, 37, 646.)
[3]
Ohno, H.; Mizutani, T.; Kadoh, Y.; Miyamura, K.; Tanaka, T. Angew. Chem., Int. Ed. 2005, 44, 5113.
[4]
Novikov, A. S. Inorg. Chim. Acta 2020, 510, 119758.
[5]
(a) Arnó, M.; Zaragozá, R. J.; Domingo, L. R. Eur. J. Org. Chem. 2005, 2005, 3973.
[5]
(b) Domingo, L. R.; Ríos-Gutiérrez, M.; Silvi, B.; Pérez, P. Eur. J. Org. Chem. 2018, 2018, 1107.
[5]
(c) Mu, B.-S.; Zhang, Z.-H.; Wu, W.-B.; Yu, J.-S.; Zhou, J. Acta Chim. Sinica 2021, 79, 685. (in Chinese)
[5]
(穆博帅, 张志豪, 武文彪, 余金生, 周剑, 化学学报, 2021, 79, 685.)
[5]
(d) Lu, P.; Ma, S. Chin. J. Chem. 2010, 28, 1600.
[6]
Xu, Y.; Conner, M. L.; Brown, M. K. Angew. Chem., Int. Ed. 2015, 54, 11918.
[7]
(a) Sarkar, D.; Bera, N.; Ghosh, S. Eur. J. Org. Chem. 2020, 2020, 1310.
[7]
(b) Poplata, S.; Troster, A.; Zou, Y. Q.; Bach, T. Chem. Rev. 2016, 116, 9748.
[7]
(c) Singh, K.; Trinh, W.; Weaver, J. D. III. Org. Biomol. Chem. 2019, 17, 1854.
[7]
(d) Gan, M.; Zhang, W.; Huo, X.; Han, Y. Sci. Sin.: Chim. 2017, 47, 705. (in Chinese)
[7]
(甘明明, 张伟, 霍现宽, 韩英锋, 中国科学: 化学, 2017, 47, 705.)
[8]
(a) Ren, X.; Lu, Y.; Lu, G.; Wang, Z. X. Org. Lett. 2020, 22, 2454.
[8]
(b) Zhao, L.; Zhang, L.; Fang, D.-C. Organometallics 2016, 35, 3577.
[8]
(c) Canellas, S.; Montgomery, J.; Pericas, M. A. J. Am. Chem. Soc. 2018, 140, 17349.
[8]
(d) Hoyt, J. M.; Schmidt, V. A.; Tondreau, A. M.; Chirik, P. J. Science 2015, 349, 960.
[8]
(e) Zeng, Z.; Yang, D. Chin. J. Org. Chem. 2013, 33, 2131. (in Chinese)
[8]
(曾中一, 杨定乔, 有机化学, 2013, 33, 2131.)
[9]
(a) Boxer, M. B.; Yamamoto, H. Org. Lett. 2005, 7, 3127.
[9]
(b) Inanaga, K.; Takasu, K.; Ihara, M. J. Am. Chem. Soc. 2005, 127, 3668.
[9]
(c) Shen, L.; Zhao, K.; Doitomi, K.; Ganguly, R.; Li, Y. X.; Shen, Z. L.; Hirao, H.; Loh, T. P. J. Am. Chem. Soc. 2017, 139, 13570.
[10]
Takasu, K.; Ueno, M.; Inanaga, K.; Ihara, M. J. Org. Chem. 2004, 69, 517.
[11]
(a) Muratore, M. E.; Homs, A.; Obradors, C.; Echavarren, A. M. Chem.-Asian J. 2014, 9, 3066.
[11]
(b) Zhou, L.; Xu, B.; Ji, D.; Zhang, Z.-M.; Zhang, J. Chin. J. Chem. 2020, 38, 577.
[11]
(c) Zhou, Y.; Liu, S.; Chen, H.; Chen, J.; Sun, W.; Li, S.; Yang, Q.; Fan, B. Chin. J. Chem. 2015, 33, 1115.
[12]
Sweis, R. F.; Schramm, M. P.; Kozmin, S. A. J. Am. Chem. Soc. 2004, 126, 7442.
[13]
Sumaria, C. S.; Turkmen, Y. E.; Rawal, V. H. Org. Lett. 2014, 16, 3236.
[14]
Sun, J.; Keller, V. A.; Meyer, S. T.; Kozmin, S. A. Adv. Synth. Catal. 2010, 352, 839.
[15]
Domingo, L. R.; Ríos-Gutiérrez, M.; Pérez, P. RSC Adv. 2020, 10, 15394.
[16]
Wang, H.-D.; Fan, H.-J. Commun. Chem. 2020, 3, 126.
[17]
Turkmen, Y. E.; Montavon, T. J.; Kozmin, S. A.; Rawal, V. H. J. Am. Chem. Soc. 2012, 134, 9062.
[18]
Mueller, T. In Functional Molecular Silicon Compounds I: Regular Oxidation States, 155, Eds.: Scheschkewitz, D., Springer, New York, 2014, p. 107.
[19]
Fang, G.; Bi, X. Chem. Soc. Rev. 2015, 44, 8124.
[20]
Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580.
[21]
Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. J. Am. Chem. Soc. 2010, 132, 6498.
[22]
Lu, T.; Chen, Q. Chem. Methods 2021, 1, 231.
[23]
Xiao, P.; Li, C. X.; Fang, W. H.; Cui, G.; Thiel, W. J. Am. Chem. Soc. 2018, 140, 15099.
[24]
Domingo, L. R.; Rios-Gutierrez, M.; Perez, P. Molecules 2016, 21, 748.
[25]
Allen, A. D.; Tidwell, T. T. In Advances in Physical Organic Chemistry, Vol. 48, Eds.: Ian, N. H. W.; Williams, H., Elsevier Ltd., UK, 2014, p. 229.
[26]
Antoniotti, S.; Dalla, V.; Dunach, E. Angew. Chem., Int. Ed. 2010, 49, 7860.
[27]
(a) Kazakova, A. N.; Vasilyev, A. V. Russ. J. Org. Chem. 2017, 53, 485.
[27]
(b) Greb, L. Chem.-Eur. J. 2018, 24, 17881.
[28]
(a) Shindo, M.; Matsumoto, K. In Stereoselective Alkene Synthesis, Vol. 327, Ed.: Wang, J., Springer, New York, 2012, p. 1.
[28]
(b) Shindo, M. Synthesis-Stuttgart 2003, 15, 2275.
[28]
(c) Qian, H.; Zhao, W.; Sun, J. Chem. Rec. 2014, 14, 1070.
[29]
Allen, A. D.; Tidwell, T. T. ARKIVOC 2016, i, 415.
[30]
Huang, L.; Wu, J.; Hu, J.; Bi, Y.; Huang, D. Tetrahedron Lett. 2020, 61, 151363.
[31]
Lee, V. Y. Russ. Chem. Rev. 2019, 88, 351.
[32]
(a) Lambert, J. B.; Zhang, S. H.; Stern, C. L.; Huffman, J. C. Science 1993, 260, 1917.
[32]
(b) Kim, K. C.; Reed, C. A.; Elliott, D. W.; Mueller, L. J.; Tham, F.; Lin, L. J.; Lambert, J. B. Science 2002, 297, 825.
[32]
(c) Douvris, C.; Ozerov, O. V. Science 2008, 321, 1188.
[32]
(d) Allemann, O.; Duttwyler, S.; Romanato, P.; Baldridge, K. K.; Siegel, J. S. Science 2011, 332, 574.
[33]
Avcı, Ö. N.; Catak, S.; Dereli, B.; Aviyente, V.; Dedeoglu, B. ChemCatChem 2019, 12, 366.
[34]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J.,Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford, CT, 2016.
[35]
Chemcraft-graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com.
[36]
Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615.
[37]
Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297.
[38]
Fukui, K. Acc. Chem. Res. 1981, 14, 363.
[39]
Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.
[40]
(a) Ryu, H.; Park, J.; Kim, H. K.; Park, J. Y.; Kim, S.-T.; Baik, M.-H. Organometallics 2018, 37, 3228.
[40]
(b) Wei, C. S.; Jiménez-Hoyos, C. A.; Videa, M. F.; Hartwig, J. F.; Hall, M. B. J. Am. Chem. Soc. 2010, 132, 3078.
文章导航

/