银催化的硅烷氧基炔和羰基化合物的[2+2]环加成机理:硅正离子迁移主导的过程
收稿日期: 2021-06-22
修回日期: 2021-08-04
网络出版日期: 2021-08-25
基金资助
国家重点研发计划(2016YFB0600301); 国家自然科学基金(92061114); 国家自然科学基金(21873096); 中科院战略先导计划(XDB17010200)
Mechanism of Silver-Catalyzed [2+2] Cycloaddition between Siloxy-Alkynes and Carbonyl Compound: A Silylium Ion Migration Approach
Received date: 2021-06-22
Revised date: 2021-08-04
Online published: 2021-08-25
Supported by
National Key Research and Development Program of China(2016YFB0600301); National Natural Science Foundation of China(92061114); National Natural Science Foundation of China(21873096); Strategic Priority Research Program of Chinese Academy of Sciences(XDB17010200)
王恒定 , 江凌 , 梁鸿雁 , 樊红军 . 银催化的硅烷氧基炔和羰基化合物的[2+2]环加成机理:硅正离子迁移主导的过程[J]. 有机化学, 2021 , 41(11) : 4327 -4337 . DOI: 10.6023/cjoc202106038
Mechanism of silver-catalyzed [2+2] cycloaddition between siloxy-alkynes and α,β-unsaturated carbonyl compound remains controversial. Based on density functional theory (DFT) calculation, it is revealed that Ag+ activate siloxy-alkyne into silver-ketene and silylium ion (TIPS+) in this reaction. TIPS+ then promote [2+2] cycloaddition between α,β-unsaturated carbonyl compound and silver-ketene to form cyclobutane-intermediate, which undergos TIPS+ migration and transforms into final product. The mechanism of Ag+ catalyzed olefination of aldehydes using siloxy-alkynes was also investigated, the results showed that TIPS+ migration also took place in this reaction. In the two reactions studied, Ag+ interacts with π-bond of siloxy-alkynes and triggers TIPS+ migration, which offers alternative solution to silylium-catalyzed reaction. As similarity of ynolates, silver-ketenes are more stable, which can undergo 1,4-nucleophilic addition with α,β- unsaturated compound. For [2+2] cycloaddition, catalytic variant is rather limited, this work provides a different perspective to obtain four-membered ring products or its ring-open derivates.
[1] | Hoffmann, R.; Woodward, R. B. Acc. Chem. Res. 1968, 1, 17. |
[2] | (a) Xu, C.-H.; Li, Y.; Li, J.-H.; Xiang, J.-N.; Deng, W. Sci. China: Chem. 2019, 62, 1463. |
[2] | (b) Liu, Y.; Bandini, M. Chin. J. Chem. 2019, 37, 431. |
[2] | (c) Li, Y.; Jin, G.-F.; An, Y.-Y.; Das, R.; Han, Y.-F. Chin. J. Chem. 2019, 37, 1147. |
[2] | (d) Zhang, R.; Yuan, Y.; Qiu, Z.; Xie, Z. Chin. J. Chem. 2018, 36, 273. |
[2] | (e) Li, K.; Bai, L.; Luan, X. Chin. J. Org. Chem. 2019, 39, 2211. (in Chinese) |
[2] | (李锟雨, 白璐, 栾新军, 有机化学, 2019, 39, 2211.) |
[2] | (f) Li, Z.; Jian, H.; Wang, W.; Wang, Q.; He, L. Chin. J. Org. Chem. 2018, 38, 2045. (in Chinese) |
[2] | (李志娟, 翦辉, 王伟华, 王强, 何林, 有机化学, 2018, 38, 2045.) |
[2] | (g) Zhao, L.; Tong, X.; Zhu, H.; Yang, D.; Fan, M. Chin. J. Org. Chem. 2017, 37, 646. (in Chinese) |
[2] | (赵立芳, 同晓娟, 祝海涛, 杨得锁, 凡明锦, 有机化学, 2017, 37, 646.) |
[3] | Ohno, H.; Mizutani, T.; Kadoh, Y.; Miyamura, K.; Tanaka, T. Angew. Chem., Int. Ed. 2005, 44, 5113. |
[4] | Novikov, A. S. Inorg. Chim. Acta 2020, 510, 119758. |
[5] | (a) Arnó, M.; Zaragozá, R. J.; Domingo, L. R. Eur. J. Org. Chem. 2005, 2005, 3973. |
[5] | (b) Domingo, L. R.; Ríos-Gutiérrez, M.; Silvi, B.; Pérez, P. Eur. J. Org. Chem. 2018, 2018, 1107. |
[5] | (c) Mu, B.-S.; Zhang, Z.-H.; Wu, W.-B.; Yu, J.-S.; Zhou, J. Acta Chim. Sinica 2021, 79, 685. (in Chinese) |
[5] | (穆博帅, 张志豪, 武文彪, 余金生, 周剑, 化学学报, 2021, 79, 685.) |
[5] | (d) Lu, P.; Ma, S. Chin. J. Chem. 2010, 28, 1600. |
[6] | Xu, Y.; Conner, M. L.; Brown, M. K. Angew. Chem., Int. Ed. 2015, 54, 11918. |
[7] | (a) Sarkar, D.; Bera, N.; Ghosh, S. Eur. J. Org. Chem. 2020, 2020, 1310. |
[7] | (b) Poplata, S.; Troster, A.; Zou, Y. Q.; Bach, T. Chem. Rev. 2016, 116, 9748. |
[7] | (c) Singh, K.; Trinh, W.; Weaver, J. D. III. Org. Biomol. Chem. 2019, 17, 1854. |
[7] | (d) Gan, M.; Zhang, W.; Huo, X.; Han, Y. Sci. Sin.: Chim. 2017, 47, 705. (in Chinese) |
[7] | (甘明明, 张伟, 霍现宽, 韩英锋, 中国科学: 化学, 2017, 47, 705.) |
[8] | (a) Ren, X.; Lu, Y.; Lu, G.; Wang, Z. X. Org. Lett. 2020, 22, 2454. |
[8] | (b) Zhao, L.; Zhang, L.; Fang, D.-C. Organometallics 2016, 35, 3577. |
[8] | (c) Canellas, S.; Montgomery, J.; Pericas, M. A. J. Am. Chem. Soc. 2018, 140, 17349. |
[8] | (d) Hoyt, J. M.; Schmidt, V. A.; Tondreau, A. M.; Chirik, P. J. Science 2015, 349, 960. |
[8] | (e) Zeng, Z.; Yang, D. Chin. J. Org. Chem. 2013, 33, 2131. (in Chinese) |
[8] | (曾中一, 杨定乔, 有机化学, 2013, 33, 2131.) |
[9] | (a) Boxer, M. B.; Yamamoto, H. Org. Lett. 2005, 7, 3127. |
[9] | (b) Inanaga, K.; Takasu, K.; Ihara, M. J. Am. Chem. Soc. 2005, 127, 3668. |
[9] | (c) Shen, L.; Zhao, K.; Doitomi, K.; Ganguly, R.; Li, Y. X.; Shen, Z. L.; Hirao, H.; Loh, T. P. J. Am. Chem. Soc. 2017, 139, 13570. |
[10] | Takasu, K.; Ueno, M.; Inanaga, K.; Ihara, M. J. Org. Chem. 2004, 69, 517. |
[11] | (a) Muratore, M. E.; Homs, A.; Obradors, C.; Echavarren, A. M. Chem.-Asian J. 2014, 9, 3066. |
[11] | (b) Zhou, L.; Xu, B.; Ji, D.; Zhang, Z.-M.; Zhang, J. Chin. J. Chem. 2020, 38, 577. |
[11] | (c) Zhou, Y.; Liu, S.; Chen, H.; Chen, J.; Sun, W.; Li, S.; Yang, Q.; Fan, B. Chin. J. Chem. 2015, 33, 1115. |
[12] | Sweis, R. F.; Schramm, M. P.; Kozmin, S. A. J. Am. Chem. Soc. 2004, 126, 7442. |
[13] | Sumaria, C. S.; Turkmen, Y. E.; Rawal, V. H. Org. Lett. 2014, 16, 3236. |
[14] | Sun, J.; Keller, V. A.; Meyer, S. T.; Kozmin, S. A. Adv. Synth. Catal. 2010, 352, 839. |
[15] | Domingo, L. R.; Ríos-Gutiérrez, M.; Pérez, P. RSC Adv. 2020, 10, 15394. |
[16] | Wang, H.-D.; Fan, H.-J. Commun. Chem. 2020, 3, 126. |
[17] | Turkmen, Y. E.; Montavon, T. J.; Kozmin, S. A.; Rawal, V. H. J. Am. Chem. Soc. 2012, 134, 9062. |
[18] | Mueller, T. In Functional Molecular Silicon Compounds I: Regular Oxidation States, 155, Eds.: Scheschkewitz, D., Springer, New York, 2014, p. 107. |
[19] | Fang, G.; Bi, X. Chem. Soc. Rev. 2015, 44, 8124. |
[20] | Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. |
[21] | Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. J. Am. Chem. Soc. 2010, 132, 6498. |
[22] | Lu, T.; Chen, Q. Chem. Methods 2021, 1, 231. |
[23] | Xiao, P.; Li, C. X.; Fang, W. H.; Cui, G.; Thiel, W. J. Am. Chem. Soc. 2018, 140, 15099. |
[24] | Domingo, L. R.; Rios-Gutierrez, M.; Perez, P. Molecules 2016, 21, 748. |
[25] | Allen, A. D.; Tidwell, T. T. In Advances in Physical Organic Chemistry, Vol. 48, Eds.: Ian, N. H. W.; Williams, H., Elsevier Ltd., UK, 2014, p. 229. |
[26] | Antoniotti, S.; Dalla, V.; Dunach, E. Angew. Chem., Int. Ed. 2010, 49, 7860. |
[27] | (a) Kazakova, A. N.; Vasilyev, A. V. Russ. J. Org. Chem. 2017, 53, 485. |
[27] | (b) Greb, L. Chem.-Eur. J. 2018, 24, 17881. |
[28] | (a) Shindo, M.; Matsumoto, K. In Stereoselective Alkene Synthesis, Vol. 327, Ed.: Wang, J., Springer, New York, 2012, p. 1. |
[28] | (b) Shindo, M. Synthesis-Stuttgart 2003, 15, 2275. |
[28] | (c) Qian, H.; Zhao, W.; Sun, J. Chem. Rec. 2014, 14, 1070. |
[29] | Allen, A. D.; Tidwell, T. T. ARKIVOC 2016, i, 415. |
[30] | Huang, L.; Wu, J.; Hu, J.; Bi, Y.; Huang, D. Tetrahedron Lett. 2020, 61, 151363. |
[31] | Lee, V. Y. Russ. Chem. Rev. 2019, 88, 351. |
[32] | (a) Lambert, J. B.; Zhang, S. H.; Stern, C. L.; Huffman, J. C. Science 1993, 260, 1917. |
[32] | (b) Kim, K. C.; Reed, C. A.; Elliott, D. W.; Mueller, L. J.; Tham, F.; Lin, L. J.; Lambert, J. B. Science 2002, 297, 825. |
[32] | (c) Douvris, C.; Ozerov, O. V. Science 2008, 321, 1188. |
[32] | (d) Allemann, O.; Duttwyler, S.; Romanato, P.; Baldridge, K. K.; Siegel, J. S. Science 2011, 332, 574. |
[33] | Avcı, Ö. N.; Catak, S.; Dereli, B.; Aviyente, V.; Dedeoglu, B. ChemCatChem 2019, 12, 366. |
[34] | Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J.,Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford, CT, 2016. |
[35] | Chemcraft-graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com. |
[36] | Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615. |
[37] | Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297. |
[38] | Fukui, K. Acc. Chem. Res. 1981, 14, 363. |
[39] | Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378. |
[40] | (a) Ryu, H.; Park, J.; Kim, H. K.; Park, J. Y.; Kim, S.-T.; Baik, M.-H. Organometallics 2018, 37, 3228. |
[40] | (b) Wei, C. S.; Jiménez-Hoyos, C. A.; Videa, M. F.; Hartwig, J. F.; Hall, M. B. J. Am. Chem. Soc. 2010, 132, 3078. |
/
〈 |
|
〉 |