研究论文

钌选择性催化烯丙醇无受体脱氢合成α,β-不饱和羰基化合物

  • 刘嘉豪 ,
  • 张世冬 ,
  • 栾自鸿 ,
  • 刘艳 ,
  • 柯卓锋
展开
  • a 中山大学材料科学与工程学院 聚合物复合材料及功能材料教育部重点实验室 广州 510006
    b 广东工业大学轻工化工学院 广州 510006
† 共同第一作者.

收稿日期: 2021-07-16

  修回日期: 2021-08-15

  网络出版日期: 2021-08-25

基金资助

国家自然科学基金(21973113); 国家自然科学基金(21977019); 广东省自然科学杰出青年基金(2015A030306027)

Ruthenium Catalyzed Selective Acceptorless Dehydrogenation of Allylic Alcohols to α,β-Unsaturated Carbonyls

  • Jiahao Liu ,
  • Shidong Zhang ,
  • Zihong Luan ,
  • Yan Liu ,
  • Zhuofeng Ke
Expand
  • a Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006
    b School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006
† These authors contributed equally to this work.
* Corresponding author. E-mail:

Received date: 2021-07-16

  Revised date: 2021-08-15

  Online published: 2021-08-25

Supported by

National Natural Science Foundation of China(21973113); National Natural Science Foundation of China(21977019); Guangdong Natural Science Funds for Distinguished Young Scholar(2015A030306027)

摘要

过渡金属催化烯丙醇的选择性脱氢氧化以得到相应的α,β-不饱和羰基化合物在最近广受关注, 但是很多方法需要用到化学计量的氧化剂, 这会带来大量的废弃副产物, 原子经济性不足. 本工作开发了一种简单易得的[RuCl2(p- cymene)]2催化系统, 可用于高效地催化烯丙醇选择性脱氢合成α,β-不饱和羰基化合物, 而无需使用额外的氧化剂或H2受体.

本文引用格式

刘嘉豪 , 张世冬 , 栾自鸿 , 刘艳 , 柯卓锋 . 钌选择性催化烯丙醇无受体脱氢合成α,β-不饱和羰基化合物[J]. 有机化学, 2021 , 41(11) : 4361 -4369 . DOI: 10.6023/cjoc202107037

Abstract

Transition metal-catalyzed allyllic alcohol selective dehydrogenation to generate the corresponding α,β-unsaturated carbonyl compound has attached great attention. However, most of these methods require stoichiometric quantities of oxidants, which will bring a lot of by-products and lack of atomic economy. Herein, a simple [RuCl2(p-cymene)]2 catalyzed system to efficiently catalyze the selective dehydrogenation of allyl alcohol to form α,β-unsaturated carbonyls without the use of additional oxidants or H2 acceptors has been developed.

参考文献

[1]
(a) Dobereiner, G. E.; Crabtree, R. H. Chem. Rev. 2010, 110, 681.
[1]
(b) Choi, J.; MacArthur, A. H. R.; Brookhart, M.; Goldman, A. S. Chem. Rev. 2011, 111, 1761.
[1]
(c) Kumar, A.; Bhatti, T. M.; Goldman, A. S. Chem. Rev. 2017, 117, 12357.
[2]
(a) van der Drift, R. C.; Bouwman, E.; Drent, E. J. Organomet. Chem. 2002, 650, 1.
[2]
(b) Uma, R.; Crévisy, C.; Grée, R. Chem. Rev. 2003, 103, 27.
[2]
(c) Cadierno, V.; Crochet, P.; Gimeno, J. Synlett 2008, 1105.
[2]
(d) Mantilli, L.; Mazet, C. Chem. Lett. 2011, 40, 341.
[2]
(e) Ahlsten, N.; Bartoszewicz, A.; Martín-Matute, B. Dalton Trans. 2012, 41, 1660.
[3]
(a) Nakano, T.; Ishii, Y.; Ogawa, M. J. Org. Chem. 1987, 52, 4855.
[3]
(b) Adam, W.; Gelalcha, F. G.; Saha-Möller, C. R.; Stegmann, V. R. J. Org. Chem. 2000, 65, 1915.
[3]
(c) Kakiuchi, N.; Maeda, Y.; Nishimura, T.; Uemura, S. J. Org. Chem. 2001, 66, 6620.
[3]
(d) Johnston, E. V.; Verho, O.; Kärkäs, M. D.; Shakeri, M.; Tai, C.-W.; Palmgren, P.; Eriksson, K.; Oscarsson, S.; Bäckvall, J.-E. Chem.-Eur. J. 2012, 18, 12202.
[3]
(e) Hill-Cousins, J. T.; Kuleshova, J.; Green, R. A.; Birkin, P. R.; Pletcher, D.; Underwood, T. J.; Leach, S. G.; Brown, R. C. D. ChemSusChem 2012, 5, 326.
[3]
(f) Nishii, T.; Ouchi, T.; Matsuda, A.; Matsubara, Y.; Haraguchi, Y.; Kawano, T.; Kaku, H.; Horikawa, M.; Tsunoda, T. Tetrahedron Lett. 2012, 53, 5880.
[3]
(g) Xing, Y.; Li, C.; Meng, J.; Zhang, Z.; Wang, X.; Wang, Z.; Ye, Y.; Sun, K. Adv. Synth. Catal. 2021, 363, 3913.
[3]
(h) Mancuso, A. J.; Swern, D. Synthesis 1981, 1981, 165.
[4]
(a) Wang, G. Z.; Bäckvall, J.-E. J. Chem. Soc., Chem. Commun. 1992, 337.
[4]
(b) Almeida, M. L. S.; Beller, M.; Wang, G.-Z.; Bäckvall, J.-E.; Chem.-Eur. J. 1996, 2, 1533.
[4]
(c) Almeida, M. L. S.; Kočovský, P.; Bäckvall, J.-E. J. Org. Chem. 1996, 61, 6587.
[4]
(d) Nishibayashi, Y.; Yamauchi, A.; Onodera, G.; Uemura, S. J. Org. Chem. 2003, 68, 5875.
[4]
(e) Gauthier, S.; Scopelliti, R.; Severin, K. Organometallics 2004, 23, 3769.
[4]
(f) Yi, C. S.; Zeczycki, T. N.; Guzei, I. A. Organometallics 2006, 25, 1047.
[4]
(g) Nielsen, M.; Kammer, A.; Cozzula, D.; Junge, H.; Gladiali, S.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 9593.
[4]
(h) Chelucci, G.; Baldino, S.; Baratta, W. Coord. Chem. Rev. 2015, 300, 29.
[4]
(i) Zhang, W.; Meng, C.; Liu, Y.; Tang, Y.; Li, F. Adv. Synth. Catal. 2018, 360, 3751.
[4]
(j) Udvardy, A.; Joó, F.; Kathó, Á. Coord. Chem. Rev. 2021, 438, 213871.
[4]
(k) Zeng, M.; Song, C.; Cui, D. Chin. J. Org. Chem. 2017, 37, 1352. (in Chinese)
[4]
(曾明, 宋婵, 崔冬梅, 有机化学, 2017, 37, 1352.)
[5]
(a) Coleman, M. G.; Brown, A. N.; Bolton, B. A.; Guan, H. Adv. Synth. Catal. 2010, 352, 967.
[5]
(b) Chakraborty, S.; Lagaditis, P. O.; Förster, M.; Bielinski, E. A.; Hazari, N.; Holthausen, M. C.; Jones, W. D.; Schneider, S. ACS Catal. 2014, 4, 3994.
[5]
(c) Budweg, S.; Wei, Z.; Jiao, H.; Junge, K.; Beller, M. ChemSusChem 2019, 12, 2988.
[5]
(d) Chun, S.; Ahn, J.; Putta, R. R.; Lee, S. B.; Oh, D.-C.; Hong, S. J. Org. Chem. 2020, 85, 15314.
[5]
(e) Budweg, S.; Junge, K.; Beller, M. Catal. Sci. Technol. 2020, 10, 3825.
[6]
(a) Suzuki, T.; Morita, K.; Tsuchida, M.; Hiroi, K. J. Org. Chem. 2003, 68, 1601.
[6]
(b) Hanasaka, F.; Fujita, K.; Yamaguchi, R. Organometallics 2004, 23, 1490.
[6]
(c) Hanasaka, F.; Fujita, K.; Yamaguchi, R. Organometallics 2005, 24, 3422.
[6]
(d) Hanasaka, F.; Fujita, K.; Yamaguchi, R. Organometallics 2006, 25, 4643.
[6]
(e) Fujita, K.; Yoshida, T.; Imori, Y.; Yamaguchi, R. Org. Lett. 2011, 13, 2278.
[6]
(f) Musa, S.; Shaposhnikov, I.; Cohen, S.; Gelman, D. Angew. Chem., Int. Ed. 2011, 50, 3533.
[6]
(g) Polukeev, A. V.; Petrovskii, P. V.; Peregudov, A. S.; Ezernitskaya, M. G.; Koridze, A. A. Organometallics 2013, 32, 1000.
[6]
(h) Shi, Y.; Suguri, T.; Kojima, S.; Yamamoto, Y. J. Organomet. Chem. 2015, 799-800, 7.
[6]
(i) Polukeev, A. V.; Wendt, O. F. Organometallics 2017, 36, 639.
[7]
(a) Join, B.; Möller, K.; Ziebart, C.; Schröder, K.; Gördes, D.; Thurow, K.; Spannenberg, A.; Junge, K.; Beller, M. Adv. Synth. Catal. 2011, 353, 3023.
[7]
(b) Könning, D.; Olbrisch, T.; Sypaseuth, F. D.; Tzschucke, C. C.; Christmann, M. Chem. Commun. 2014, 50, 5014.
[8]
(a) Oppenauer, R. V. Recl. Trav. Chim. Pays-Bas 1937, 56, 137.
[8]
(b) de Graauw, C. F.; Peters, J. A.; van Bekkum, H.; Huskens, J. Synthesis 1994, 1007.
[8]
(c) Gunanathan, C.; Milstein, D. Science 2013, 341, 1229712.
[8]
(d) Song, H.; Kang, B.; Hong, S. H. ACS Catal. 2014, 4, 2889.
[8]
(e) Huang, F.; Liu, Z.; Yu, Z. Angew. Chem., Int. Ed. 2016, 55, 862.
[8]
(f) Kallmeier, F.; Kempe, R. Angew. Chem., Int. Ed. 2018, 57, 46.
[8]
(g) Huang, M.; Liu, J.; Li, Y.; Lan, X.-B.; Su, P.; Zhao, C.; Ke, Z. Catal. Today 2020.
[9]
(a) Dobson, A.; Robinson, S. D. Inorg. Chem. 1977, 16, 137.
[9]
(b) Hamid, M. H. S. A.; Slatford, P. A.; Williams, J. M. J. Adv. Synth. Catal. 2007, 349, 1555.
[9]
(c) Watson, A. J. A.; Williams, J. M. J. Science 2010, 329, 635.
[9]
(d) Guillena, G.; Ramon, D. J.; Yus, M. Chem. Rev. 2010, 110, 1611.
[9]
(e) Johnson, T. C.; Morris, D. J.; Wills, M. Chem. Soc. Rev. 2010, 39, 81.
[9]
(f) Trincado, M.; Banerjee, D.; Grützmacher, H. Energy Environ. Sci. 2014, 7, 2464.
[9]
(g) Kim, S. W.; Zhang, W.; Krische, M. J. Acc. Chem. Res. 2017, 50, 2371.
[9]
(h) Chelucci, G. Coord. Chem. Rev. 2017, 331, 1.
[9]
(i) Crabtree, R. H. Chem. Rev. 2017, 117, 9228.
[9]
(j) Corma, A.; Navas, J.; Sabater, M. J. Chem. Rev. 2018, 118, 1410.
[9]
(k) Hu, B.; Zhang, Y.; Yin, G.; Chen, D. Chin. J. Org. Chem. 2020, 40, 53. (in Chinese)
[9]
(胡博文, 张宇哲, 尹鸽平, 陈大发, 有机化学, 2020, 40, 53.)
[9]
(l) Wang, C.; Xiao, J. Chin. J. Org. Chem. 2020, 40, 2182. (in Chinese)
[9]
(王超, 肖建良, 有机化学, 2020, 40, 2182.)
[9]
(m) Hao, Z.; Liu, K.; Feng, Q.; Dong, Q.; Ma, D.; Han, Z.; Lu, G.-L.; Lin, J. Chin. J. Chem. 2021, 39, 121.
[10]
(a) Choi, J. H.; Kim, N.; Shin, Y. J.; Park, J. H.; Park, J. Tetrahedron Lett. 2004, 45, 4607.
[10]
(b) Kim, W.-H.; Park, I. S.; Park, J. Org. Lett. 2006, 8, 2543.
[10]
(c) Mitsudome, T.; Mikami, Y.; Funai, H.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Angew. Chem., Int. Ed. 2008, 47, 138.
[10]
(d) Mitsudome, T.; Mikami, Y.; Ebata, K.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Chem. Commun. 2008, 4804.
[10]
(e) Shimizu, K.; Sugino, K.; Sawabe, K.; Satsuma, A. Chem.-Eur. J. 2009, 15, 2341.
[10]
(f) Fang, W.; Chen, J.; Zhang, Q.; Deng, W.; Wang, Y. Chem.-Eur. J. 2011, 17, 1247.
[10]
(g) Marella, R. K.; Prasad Neeli, C. K.; Rao Kamaraju, S. R.; Burri, D. R. Catal. Sci. Technol. 2012, 2, 1833.
[10]
(h) Shimizu, K.; Kon, K.; Seto, M.; Shimura, K.; Yamazaki, H.; Kondo, J. N. Green Chem. 2013, 15, 418.
[10]
(i) Shimizu, K.; Kon, K.; Shimura, K.; Hakim, S. S. M. A. J. Catal. 2013, 300, 242.
[10]
(j) Kon, K.; Hakim Siddiki, S. M. A.; Shimizu, K. J. Catal. 2013, 304, 63.
[10]
(k) Yi, J.; Miller, J. T.; Zemlyanov, D. Y.; Zhang, R.; Dietrich, P. J.; Ribeiro, F. H.; Suslov, S.; Abu-Omar, M. M. Angew. Chem., Int. Ed. 2014, 53, 833.
[10]
(l) Chen, J.; Fang, W.; Zhang, Q.; Deng, W.; Wang, Y. Chem. Asian J. 2014, 9, 2187.
[10]
(m) González Miera, G.; Martínez-Castro, E.; Martín-Matute, B. Organometallics 2018, 37, 636.
[11]
Ren, K.; Hu, B.; Zhao, M.; Tu, Y.; Xie, X.; Zhang, Z. J. Org. Chem. 2014, 79, 2170.
[12]
(a) Tseng, K.-N. T.; Kampf, J. W.; Szymczak, N. K. ACS Catal. 2015, 5, 5468.
[12]
(b) Hou, C.; Zhang, Z.; Zhao, C.; Ke, Z. Inorg. Chem. 2016, 55, 6539.
[12]
(c) Wang, Q.; Chai, H.; Yu, Z. Organometallics 2017, 36, 3638.
[13]
(a) Soai, K.; Yokoyama, S.; Mochida, K. Synthesis 1987, 1987, 647.
[13]
(b) Håkansson, A. E.; Palmelund, A.; Holm, H.; Madsen, R. Chem.- Eur. J. 2006, 12, 3243.
[14]
Zhu, Y.; Colomer, I.; Donohoe, T. J. Chem. Commun. 2019, 55, 10316.
[15]
Krätzschmar, F.; Kaßel, M.; Delony, D.; Breder, A. Chem.-Eur. J. 2015, 21, 7030.
[16]
Papa Spadafora, B.; Moreira Ribeiro, F. W.; Matsushima, J. E.; Ariga, E. M.; Omari, I.; Soares, P. M. A.; de Oliveira-Silva, D.; Vinhato, E.; McIndoe, J. S.; Carita Correra, T.; Rodrigues, A. Org. Biomol. Chem. 2021, 19, 5595.
[17]
Hu, D. X.; Shibuya, G. M.; Burns, N. Z. J. Am. Chem. Soc. 2013, 135, 12960.
[18]
Talwar, D.; Wu, X.; Saidi, O.; Salguero, N. P.; Xiao, J. Chem.-Eur. J. 2014, 20, 12835.
[19]
Cignarella, G.; Occelli, E.; Testa, E. J. Med. Chem. 1965, 8, 326.
[20]
Tomita, R.; Mantani, K.; Hamasaki, A.; Ishida, T.; Tokunaga, M. Chem.-Eur. J. 2014, 20, 9914.
[21]
Balcells, S.; Haughey, M. B.; Walker, J. C. L.; Josa-Culleré, L.; Towers, C.; Donohoe, T. J. Org. Lett. 2018, 20, 3583.
[22]
Li, H.; Chen, H.; Zhou, Y.; Huang, J.; Yi, J.; Zhao, H.; Wang, W.; Jing, L. Chem. Asian J. 2020, 15, 555.
[23]
Wang, R.; Tang, Y.; Xu, M.; Meng, C.; Li, F. J. Org. Chem. 2018, 83, 2274.
[24]
Li, C.; Chen, H.; Li, J.; Li, M.; Liao, J.; Wu, W.; Jiang, H. Adv. Synth. Catal. 2018, 360, 1600.
[25]
Meiß, R.; Kumar, K.; Waldmann, H. Chem.-Eur. J. 2015, 21, 13526.
[26]
Yang, Y.; Jiang, J.; Qimei, L.; Yan, X.; Zhao, J.; Yuan, H.; Qin, Z.; Wang, M. Molecules 2010, 15, 7075.
[27]
Morrill, C.; Grubbs, R. H. J. Am. Chem. Soc. 2005, 127, 2842.
[28]
Kim, D. E.; Kwak, J.; Kim, I. S.; Jeong, N. Adv. Synth. Catal. 2009, 351, 97.
[29]
Liu, J.; Zhu, J.; Jiang, H.; Wang, W.; Li, J. Chem. Commun. 2010, 46, 415.
[30]
Susanto, W.; Chu, C.-Y.; Ang, W. J.; Chou, T.-C.; Lo, L.-C.; Lam, Y. J. Org. Chem. 2012, 77, 2729.
[31]
Zhang, Z.; Wang, Q.; Chen, C.; Han, Z.; Dong, X.-Q.; Zhang, X. Org. Lett. 2016, 18, 3290.
[32]
Chen, X.; Zhang, Y.; Wan, H.; Wang, W.; Zhang, S. Chem. Commun. 2016, 52, 3532.
[33]
Ahmed, M.; Brand, H. E. A.; Peterson, V. K.; Clegg, J. K.; Kepert, C. J.; Price, J. R.; Powell, B. J.; Neville, S. M. Dalton Trans. 2021, 50, 1434.
[34]
Chavhan, S. W.; Cook, M. J. Chem.-Eur. J. 2014, 20, 4891.
[35]
Zhang, X.-W.; Jiang, G.-Q.; Lei, S.-H.; Shan, X.-H.; Qu, J.-P.; Kang, Y.-B. Org. Lett. 2021, 23, 1611.
[36]
An, X.-L.; Chen, J.-R.; Li, C.-F.; Zhang, F.-G.; Zou, Y.-Q.; Guo, Y.-C.; Xiao, W.-J. Chem. Asian J. 2010, 5, 2258.
[37]
Guo, S.-H.; Xing, S.-Z.; Mao, S.; Gao, Y.-R.; Chen, W.-L.; Wang, Y.-Q. Tetrahedron Lett. 2014, 55, 6718.
[38]
Zhang, G.; Han, X.; Luan, Y.; Wang, Y.; Wen, X.; Ding, C. Chem. Commun. 2013, 49, 7908.
[39]
You, S.; Zhang, R.; Cai, M. Synthesis 2021, 53, 1962.
[40]
Yu, C.-W.; Chen, G. S.; Huang, C.-W.; Chern, J.-W. Org. Lett. 2012, 14, 3688.
[41]
Tigineh, G. T.; Liu, L.-K. J. Chin. Chem. Soc. 2019, 66, 1729.
[42]
Yu, B.; Zhao, Y.; Zhang, H.; Xu, J.; Hao, L.; Gao, X.; Liu, Z. Chem. Commun. 2014, 50, 2330.
[43]
Chen, X.-Y.; Sorensen, E. J. J. Am. Chem. Soc. 2018, 140, 2789.
[44]
Shen, D.; Miao, C.; Wang, S.; Xia, C.; Sun, W. Org. Lett. 2014, 16, 1108.
[45]
Konishi, H.; Kumon, M.; Yamaguchi, M.; Manabe, K. Tetrahedron 2020, 76, 131639.
[46]
Troxler, F.; Harnisch, A.; Bormann, G.; Seemann, F.; Szabo, L. Helv. Chim. Acta 1968, 51, 1616.
文章导航

/