研究论文

可见光促进钯催化C—H键胺化反应合成咔唑醌衍生物的研究

  • 韩阳 ,
  • 姜为超 ,
  • 张靖 ,
  • 彭进松 ,
  • 陈春霞
展开
  • 东北林业大学化学化工与资源利用学院 哈尔滨 150040
† 共同第一作者.

收稿日期: 2021-04-17

  修回日期: 2021-07-14

  网络出版日期: 2021-09-03

基金资助

黑龙江省自然科学基金(ZD2021C001); 中央高校基本科研基金(2572019CG06)

Visible-Light-Promoted Palladium-Catalyzed C—H Amination for the Synthesis of Carbazolequinones

  • Yang Han ,
  • Weichao Jiang ,
  • Jing Zhang ,
  • Jinsong Peng ,
  • Chunxia Chen
Expand
  • College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040
† These authors contributed equally to this work.
* Corresponding authors. E-mail: ;

Received date: 2021-04-17

  Revised date: 2021-07-14

  Online published: 2021-09-03

Supported by

Natural Science Foundation of Heilongjiang Province(ZD2021C001); Fundamental Research Funds for the Central Universities(2572019CG06)

摘要

以2-氨基-3-芳基萘-1,4-二酮为底物, 发展了一类可见光/钯催化的分子内C—H键氧化胺化反应. 以氧气作为氧化剂及醋酸钯作为催化剂, 在蓝色LED光照射下, 2-氨基-3-芳基萘-1,4-二酮底物在室温下被转化为咔唑醌衍生物, 反应具有良好的产率、官能团耐受性和优异的区域选择性.

本文引用格式

韩阳 , 姜为超 , 张靖 , 彭进松 , 陈春霞 . 可见光促进钯催化C—H键胺化反应合成咔唑醌衍生物的研究[J]. 有机化学, 2022 , 42(1) : 266 -276 . DOI: 10.6023/cjoc202104037

Abstract

An intramolecular palladium-catalyzed cross-dehydrogenative C—H amination under blue LED irradiation at room temperature was developed. With oxygen as the external oxidant, a broad range of functional groups was compatible with the aromatic C—H amination of 2-amino-3-arylnaphthalene-1,4-diones, and diverse carbazolequinones can be obtained with good yields and excellent regioselectivity.

参考文献

[1]
(a) Bernardo, P. H.; Chai, C. L. L.; Heath, G. A.; Mahon, P. J.; Smith, G. D.; Waring, P.; Wilkes, B. A. J. Med. Chem. 2004, 47, 4958.
[1]
(b) Moon, Y.; Jeong, Y.; Kook, D.; Hong, S. Org. Biomol. Chem. 2015, 13, 3918.
[2]
Furukawa, H.; Wu, T. S.; Ohta, T.; Kuoh, C. S. Chem. Pharm. Bull. 1985, 33, 4132.
[3]
Rickards, R. W.; Rothschild, J. M.; Willis, A. C.; de Chazal, N. M.; Kirk, J.; Kirk, K.; Saliba, K. J.; Smith, G. D. Tetrahedron 1999, 55, 13513.
[4]
Saha, C. K.; Chowdhury, B. Phytochemistry 1998, 48, 363.
[5]
(a) Watanabe, M.; Snieckus, V. J. Am. Chem. Soc. 1980, 102, 1457.
[5]
(b) Sissouma, D.; Collet, S. C.; Guingant, A. Y. Synlett 2004, 2612.
[6]
(a) Schmidt, A. W.; Reddy, K. R.; Knolker, H. J. Chem. Rev. 2012, 112, 3193.
[6]
(b) Norman, A. R.; Norcott, P.; McErlean, C. S. P. Tetrahedron Lett. 2016, 57, 4001.
[6]
(c) Sridharan, V.; Martín, M. A.; Mene?ndez, J. C. Eur. J. Org. Chem. 2009, 4614.
[6]
(d) Bolibrukh, K.; Khoumeri, O.; Polovkovych, S.; Novikov, V.; Terme, T.; Vanelle, P. Synlett 2014, 2765.
[6]
(e) Kaliyaperumal, S. A.; Banerjee, S.; Kumar, U. K. S. Org. Biomol. Chem. 2014, 12, 6105.
[6]
(f) Ramkumar, N.; Nagarajan, R. Org. Biomol. Chem. 2015, 13, 11046.
[6]
(g) Ramkumar, N.; Nagarajan, R. RSC Adv. 2015, 5, 87838.
[6]
(h) Do, H. H.; Ejaz, S. A.; Molenda, R.; Ohlendorf, L.; Villinger, A.; Khan, S. U.; Lecka, J.; Sevigny, J.; Iqbal, J.; Ehlers, P.; Langer, P. ChemistrySelect 2019, 4, 2545.
[6]
(i) Abe, T.; Ikeda, T.; Yanada, R.; Ishikura, M. Org. Lett. 2011, 13, 3356.
[6]
(j) Indumathi, T.; Fronczek, F. R.; Prasad, K. J. R. Tetrahedron Lett. 2014, 55, 5361.
[6]
(k) Dethe, D. H.; Murhade, G. M. Eur. J. Org. Chem. 2014, 6953.
[6]
(l) Zhang, K.; Xu, H.; Liu, Z.; Song, C. Chin. J. Org. Chem. 2019, 39, 1142. (in Chinese)
[6]
(张坤, 徐红进, 刘咨博, 宋传君, 有机化学, 2019, 39, 1142.)
[7]
(a) Moon, Y.; Jeong, Y.; Kook, D.; Hong, S. Org. Biomol. Chem. 2015, 13, 3918.
[7]
(b) Sieveking, I.; Thomas, P.; Este?vez, J. C.; Quin?ones, N.; Cue?llar, M. A.; Villena, J.; Espinosa-Bustos, C.; Fierro, A.; Tapia, R. A.; Maya, J. D.; Lo?pez-Mun?oz, R.; Cassels, B. K.; Este?vez, R. J.; Salas, C. O. Med. Chem. 2014, 22, 4609.
[7]
(c) Mandal, A.; Mondal, S. K.; Jana, A.; Manna, S. K.; Ali, S. A.; Samanta, S. J. Heterocycl. Chem. 2017, 54, 2529.
[7]
(d) Suematsu, N.; Ninomiya, M.; Sugiyama, H.; Udagawa, T.; Tanaka, K.; Koketsu, M. Bioorg. Med. Chem. Lett. 2019, 29, 2243.
[7]
(e) Chen, X.-L.; Dong, Y.; He, S.; Zhang, R.; Zhang, H.; Tang, L.; Zhang, X.-M.; Wang, J.-Y. Synlett 2019, 30, 615.
[7]
(f) Li, X.; Song, Z.; Chen, X.; Cai, Y.; Liu, Y.; Chen, C.; Peng, J. Chin. J. Org. Chem. 2020, 40, 950. (in Chinese)
[7]
(李雪, 宋子锐, 陈鑫, 蔡轶超, 刘雅婕, 陈春霞, 彭进松, 有机化学, 2020, 40, 950.)
[8]
Xu, S.; Nguyen, T.; Pomilio, I.; Vitale, M. C.; Velu, S. E. Tetrahedron 2014, 70, 5928.
[9]
Nishiyama, T.; Choshi, T.; Kitano, K.; Hibino, S. Tetrahedron Lett. 2011, 52, 3876.
[10]
(a) Guo, J.; Kiran, I. N. C.; Reddy, R. S.; Gao, J.; Tang, M.; Liu, Y.; He, Y. Org. Lett. 2016, 18, 2499.
[10]
(b) Guo, J.; Kiran, I. N. C.; Gao, J.; Reddy, R. S.; He, Y. Tetrahedron Lett. 2016, 57, 3481.
[10]
(c) Banne, S.; Reddy, D. P.; Li, W.; Wang, C.; Guo, J.; He, Y. Org. Lett. 2017, 19, 4996.
[11]
(a) Chan, C. M.; Chow, Y. C.; Yu, W. Y. Synthesis 2020, 52, 2899.
[11]
(b) Yang, Y. F.; Zhang, D. Q.; Vessally, E. Top. Curr. Chem. 2020, 378, 37.
[12]
Selected reviews: (a) Cheng, X.; Hu, X.; Lu, Z. Chin. J. Org. Chem. 2017, 37, 251. (in Chinese)
[12]
(程骁恺, 胡新根, 陆展, 有机化学, 2017, 37, 251.)
[12]
(b) Zhang, Y; Schilling, W; Das, S. ChemSusChem 2019, 12, 2898.
[12]
(c) Zhang, X.; Rakesh, K. P.; Ravindar, L.; Qin, H. L. Green Chem. 2018, 20, 4790.
[13]
Selected examples, see: (a) Maity, S.; Zheng, N. Angew. Chem., Int. Ed. 2012, 51, 9562.
[13]
(b) Choi, S.; Chatterjee, T.; Choi, W. J.; You, Y.; Cho, E. J. S ACS Catal. 2015, 5, 4796.
[13]
(c) Martínez, C.; Bosnidou, A. E.; Allmendinger, S.; Muñiz, K. Chem. Eur. J. 2016, 22, 9929.
[13]
(d) Moon, Y.; Jang, E.; Choi, S.; Hong, S. Org. Lett. 2018, 20, 240.
[13]
(e) Wang, N.; Gu, Q.-S.; Li, Z.-L.; Li, Z.; Guo, Y.-L.; Guo, Z.; Liu, X.-Y. Angew. Chem., Int. Ed. 2018, 57, 14225.
[14]
Selected examples, see: (a) Margrey, K. A.; McManus, J. B.; Bonazzi, S.; Zecri, F.; Nicewicz, D. A. J. Am. Chem. Soc. 2017, 139, 11288.
[14]
(b) Ruffoni, A.; Juliá, F.; Svejstrup, T. D.; McMillan, A. J.; Douglas, J. J.; Leonori, D. Nat. Chem. 2019, 11, 426.
[14]
(c) Kaur, S.; Kumar, M.; Bhalla, V. Green Chem. 2016, 18, 5870.
[14]
(d) Zheng, Y.-W.; Chen, B.; Ye, P.; Feng, K.; Wang, W.; Meng, Q.-Y.; Wu, L.-Z.; Tung, C.-H. J. Am. Chem. Soc. 2016, 138, 10080.
[14]
(e) Zhao, F.; Yang, Q.; Zhang, J.; Shi, W.; Hu, H.; Liang, F.; Wei, W.; Zhou, S. Org. Lett. 2018, 20, 7753.
[14]
(f) Engl, P. S.; Häring, A. P.; Berger, F.; Berger, G.; Pérez-Bitrián, A.; Ritter, T. J. Am. Chem. Soc. 2019, 141, 13346.
[15]
Ashok, P.; Ilangovan, A. Tetrahedron Lett. 2018, 59, 438.
[16]
Hsu, Y. C.; Wang, V. C. C.; Au-Yeung, K. C.; Tsai, C. Y.; Chang, C. C.; Lin, B. C.; Chan, Y. T.; Hsu, C. P.; Yap, G. P. A.; Jurca, T.; Ong, T. G. Angew. Chem., Int. Ed. 2018, 57, 4622.
[17]
(a) Campeau, L. C.; Parisien, M.; Jean, A.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 581.
[17]
(b) Mota, A. J.; Dedieu, A.; Bour, C.; Suffert, J. J. Am. Chem. Soc. 2005, 127, 7171.
[17]
(c) Garcia-Cuadrado, D.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. J. Am. Chem. Soc. 2006, 128, 1066.
[18]
Lisboa, C. D.; de Lucas, N. C.; Garden, S. J. Dyes Pigm. 2016, 134, 618.
文章导航

/