光电联合催化的研究进展
收稿日期: 2021-06-26
修回日期: 2021-08-20
网络出版日期: 2021-09-03
基金资助
黑龙江省自然科学基金优秀青年(YQ2019B004)
Research Progress of Photoelectric Co-catalysis
Received date: 2021-06-26
Revised date: 2021-08-20
Online published: 2021-09-03
Supported by
Youth Project of Natural Science Foundation of Heilongjiang Province(YQ2019B004)
近年来, 温和、绿色的光化学和电化学反应在有机合成中得到了广泛的应用. 为了进一步提升光、电反应潜力, 有机化学家们致力于在单一反应体系中使用这两种策略来促进有机转化. 一系列光电联合催化策略被开发出来, 目前主要的光电联合催化策略是电化学介导的光氧化还原催化. 此外, 光激发辅助、电化学主导氧化还原的光电联合催化策略也逐渐展现出其在有机合成中的潜力. 这些策略实现了光化学与电化学优缺点的互补, 能解决光化学和电化学所不能解决的部分问题, 如去除使反应复杂化的氧化还原剂, 在温和的条件下生成活性高的中间体等. 按照现有的光电联合催化反应, 分类总结光电联合催化策略的研究进展, 并探讨了部分反应可能的机理.
刘颖杰 , 王智传 , 孟建萍 , 李晨 , 孙凯 . 光电联合催化的研究进展[J]. 有机化学, 2022 , 42(1) : 100 -110 . DOI: 10.6023/cjoc202106051
Photochemical and electrochemical reactions, which are mild and green, have been widely used in organic synthesis in recent years. To push the limits of both synthetic technologies, organic chemists have focused on using these two strategies to promote organic transformation in a single reaction system. A series of photoelectrochemical strategies have been developed, and the main one at present is electrochemically mediated photoredox catalysis. In addition, photoexcitation-assisted electroredox strategies have also gradually shown their potential in organic synthesis. These strategies realize the complementary advantages and disadvantages of photochemistry and electrochemistry, and can solve the problems that can not be solved by a single synthetic technology, such as removing oxidizing reducing agents that complicate the reaction, generating intermediates with high activity under mild conditions, and so on. In this paper, the research progress of photoelectrochemical strategies is summarized according to the existing photoelectric catalysis reactions, and the possible mechanism of some reactions is discussed.
Key words: photoredox catalysis; electrocatalysis; photoelectrochemistry
[1] | Faraday, M. Ann. Phys. (Leipzig) 1834, 47, 438. |
[2] | Kolbe, H. J. Prakt. Chem. 1847, 41, 137. |
[3] | Schoenbein, Ch. F. Liebigs Ann. Chem. 1845, 54, 164. |
[4] | Liu, Y.-J.; Han, Y.-H.; Lin, L.-Q.; Xu, Y. Chin. J. Org. Chem. 2021, 41, 934. (in Chinese) |
[4] | (刘颖杰, 韩莹徽, 林立青, 许颖, 有机化学, 2021, 41, 934.) |
[5] | Sun, K.; Lei, J.; Liu, Y.-J.; Liu, B.; Chen, N. Adv. Synth. Catal. 2020, 362, 3709. |
[6] | Yuan, Y.; Lei, A.-W. Acc. Chem. Res. 2019, 52, 3309. |
[7] | Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2008, 130, 12886. |
[8] | Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77. |
[9] | Narayanam, M. R.; Tucker, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2009, 131, 8756. |
[10] | Gan, Z.-Y.; Li, G.-Q.; Yang, X.-B.; Yan, Q.-L.; Xu, G.-Y.; Li, G.-Y.; Jiang, Y.-Y.; Yang, D.-S. Sci. China: Chem. 2020, 63, 1652. |
[11] | Xie, J.; Jin, H.; Hashmi, A. S. K. Chem. Soc. Rev. 2017, 46, 5193. |
[12] | Becker, M. R.; Richardson, A. D.; Schindler, C. S. Nat. Commun. 2019, 10, 5095. |
[13] | Kong, Y.-L.; Xu, W.-X.; Ye, F.-X.; Weng, J.-Q. Chin. J. Org. Chem. 2019, 39, 3065. (in Chinese) |
[13] | (孔瑶蕾, 徐雯秀, 叶飞霞, 翁建全, 有机化学, 2019, 39, 3065.) |
[14] | Moutet, J. C.; Reverdy, G. Tetrahedron Lett. 1979, 20, 2389. |
[15] | Moutet, J. C.; Reverdy, G. J. Chem. Soc.,Chem. Commun. 1982, 654. |
[16] | Yu, Y.; Guo, P.; Zhong, J.-S.; Yuan, Y.; Ye, K.-Y. Org. Chem. Front. 2020, 7, 131. |
[17] | Capaldo, L.; Quadri, L. L.; Ravelli, D. Angew. Chem.,Int. Ed. 2019, 58, 17508. |
[18] | Barham, J. P.; König, B. Angew. Chem.,Int. Ed. 2020, 59, 11732. |
[19] | Chen, N.; Xu, H.-C. Chem. Rec. 2021, 21, 1. |
[20] | Qiu, Y.; Scheremetjew, A.; Finger, L. H.; Ackermann, L. Chem.- Eur. J. 2020, 26, 3241. |
[21] | Ouyang, Y.; Xu, X.-H.; Qing, F.-L. Angew. Chem.,Int. Ed. 2018, 57, 6926. |
[22] | Deng, Y.; Lu, F.-L.; You, S.-Q.; Xia, T.-R.; Zheng, Y.-F.; Lu, C.-F.; Yang, G.-C.; Chen, Z.-X.; Gao, M.; Lei, A.-W. Chin. J. Chem. 2019, 37, 817. |
[23] | Yan, H.; Hou, Z.-W.; Xu, H.-C. Angew. Chem., nt. Ed. 2019, 58, 4592. |
[24] | Lai, X.-L.; Shu, X.-M.; Song, J.; Xu, H.-C. Angew. Chem.,Int. Ed. 2020, 59, 10626. |
[25] | Koeller, J.; Gandeepan, P.; Ackermann, L. Synthesis 2019, 51, 1284. |
[26] | Tian, W.-F.; Hu, C.-H.; He, K.-H.; He, X.-Y.; Li, Y. Org. Lett. 2019, 21, 6930. |
[27] | Kurihara, H.; Fuchigami, T.; Tajima, T. J. Org. Chem. 2008, 73, 6888. |
[28] | Xiang, J.; Shang, M.; Kawamata, Y.; Lundberg, H.; Reisberg, S. H.; Chen, M.; Mykhailiuk, P.; Beutner, G.; Collins, M. R.; Davies, A.; Del Bel, M.; Gallego, G. M.; Spangler, J. E.; Starr, J.; Yang, S.; Blackmond, D. G.; Baran, P. S. Nature 2019, 573, 398. |
[29] | Xu, F.; Lai, X.-L.; Xu, H.-C. Synlett 2021, 32, 369. |
[30] | Niu, L.; Jiang, C.-Y.; Liang, Y.-W.; Liu, D.-D.; Bu, F.-X.; Shi, R.-Y.; Chen, H.; Chowdhury, A. D.; Lei, A.-W. J. Am. Chem. Soc. 2020, 41, 17693. |
[31] | Yang, Y. Z.; Song, R. J.; Li, J. H. Org. Lett. 2019, 21, 3228. |
[32] | Zhang, W.; Carpenter, K. L.; Lin, S. Angew. Chem., Int. Ed. 2020, 59, 409. |
[33] | Zelenka, J.; Svobodová, E.; Tarábek, J.; Hoskovcová, I.; Boguschová, V.; Bailly, S.; Sikorski, M.; Roithová, J.; Cibulka, R. Org. Lett. 2019, 21, 114. |
[34] | Capaldo, L.; Quadri, L. L.; Merli, D.; Ravelli, D. Chem. Commun. 2021, 57, 4424. |
[35] | Hou, Z.-W.; Xu, H.-C. ChemElectroChem 2021, 8, 1571. |
[36] | Huang, H.; Strater, Z. M.; Rauch, M.; Shee, J.; Sisto, T. J.; Nuckolls, C.; Lambert, T. H. Angew. Chem.,Int. Ed. 2019, 58, 13318. |
[37] | Huang, H.; Lambert, T. H. Angew. Chem.,Int. Ed. 2020, 59, 658. |
[38] | Huang, H.; Strater, Z. M.; Lambert, T. H. J. Am. Chem. Soc. 2020, 142, 1698. |
[39] | Tao, S.; Lambert, T. H. Science 2021, 371, 620. |
[40] | Kim, H.; Kim, H.; Lambert, T. H.; Lin, S. J. Am. Chem. Soc. 2020, 142, 2087. |
[41] | Cowper, N. G. W.; Chernowsky, C. P.; Williams, O. P.; Wickens, Z. K. J. Am. Chem. Soc. 2020, 142, 2093. |
[42] | Chen, J.; Yan, W.-Q.; Lam, C. M.; Zeng, C. C.; Hu, L.-M.; Little, R. D. Org. Lett. 2015, 17, 986. |
[43] | Kiyokawa, K.; Kosaka, T.; Minakata, S. Org. Lett. 2013, 15, 4858. |
[44] | Wang, F.; Stahl, S. S. Angew. Chem.,Int. Ed. 2019, 58, 6385. |
[45] | Herold, S.; Bafaluy, D.; Muñiz, K. Green Chem. 2018, 20, 3191. |
[46] | Hu, X.; Zhang, G.-T.; Bu, F.-X.; Nie, L.; Lei, A.-W. ACS Catal. 2018, 8, 9370. |
[47] | Shono, T.; Matsumura, Y.; Katoh, S.; Takeuchi, K.; Sasaki, K.; Kamada, T.; Shimizu, R. J. Am. Chem. Soc. 1990, 112, 2368. |
[48] | Zhang, S.; Li, L.; Xue, M.; Zhang, R.; Xu, K.; Zeng, C. Org. Lett. 2018, 20, 3443. |
[49] | Liu, Y.; Lin, L.-Q.; Han, Y.-H.; Liu, Y.-J. Chin. J. Org. Chem. 2020, 40, 4216. (in Chinese) |
[49] | (刘洋, 林立青, 韩莹徽, 刘颖杰, 有机化学, 2020, 40, 4216.) |
[50] | Xu, P.; Chen, P.-Y.; Xu, H.-C. Angew. Chem.,Int. Ed. 2020, 59, 14275. |
/
〈 |
|
〉 |