综述与进展

基于大环化合物与二氟硼二吡咯亚甲基的超分子荧光系统的设计及应用研究进展

  • 郭京京 ,
  • 郭敏捷
展开
  • 天津大学药物科学与技术学院 天津 300072

收稿日期: 2021-03-05

  修回日期: 2021-04-22

  网络出版日期: 2021-05-23

基金资助

国家自然科学基金(21871208)

Progress in Design and Application of Supramolecular Fluorescent Systems Based on Difluoroboron-Dipyrromethene and Macrocyclic Compounds

  • Jingjing Guo ,
  • Minjie Guo
Expand
  • School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072
*Corresponding author.E-mail:

Received date: 2021-03-05

  Revised date: 2021-04-22

  Online published: 2021-05-23

Supported by

National Natural Science Foundation of China(21871208)

摘要

大环化合物由于其独特的刚性结构, 功能性和主客体特性在超分子化学中起着至关重要的作用, 除了常见的环糊精、杯芳烃、杯吡咯、葫芦脲和柱芳烃之外, 近些年来还出现了很多新型大环分子. 二氟硼二吡咯亚甲基(BODIPY)染料因其优异的光学性质, 包括吸收和荧光发射带窄、摩尔吸收系数和量子产率高以及良好的光、热以及化学稳定性, 被广泛应用于生物与化学领域. 大环化合物的官能团化已被证明是构建具有特定功能智能材料的有效策略之一. 该综述根据BODIPY与大环化合物所构建的超分子系统的功能应用, 对近年来报道的这类超分子系统进行了分类总结和讨论, 并提出了该领域未来的发展方向.

本文引用格式

郭京京 , 郭敏捷 . 基于大环化合物与二氟硼二吡咯亚甲基的超分子荧光系统的设计及应用研究进展[J]. 有机化学, 2021 , 41(8) : 2946 -2963 . DOI: 10.6023/cjoc202103012

Abstract

Macrocyclic compounds play an important role in supramolecular chemistry because of their unique shape, reactivity and host-guest properties. Cyclodextrin, calixarene, calixpyrrole, cucurbituril and pillararene are the most common macrocyclic compounds. In addition, many new macrocyclic molecules have been reported in recent years. Difluoroboron- dipyrromethene (BODIPY) dyes are widely used in biological and chemical fields because of their excellent optical properties, including narrow absorption and fluorescence emission bands, high molar absorption coefficient, high quantum yield and good light, thermal and chemical stability. The combination of macrocyclic compounds and BODIPY dyes has been proved to be an effective strategy for the construction of smart materials with specific properties. In this review the macrocyclic compounds containing BODIPY reported in recent years have been summarized and discussed based on the functional application, and the future development direction in this field is put forward.

参考文献

[1]
Villiers, A.; Acad, C. R. Science 1891, 112, 536.
[2]
Schardinger, F. Wien Klin. Wochenschr. 1904, 17, 207.
[3]
Baeyer, A. Ber. Dtsch. Chem. Ges. 1872, 5, 1094.
[4]
Gutsche, C. D.; Muthukrishnan, R. J. Org. Chem. 1978, 43, 4905.
[5]
Morohashi, N.; Narumi, F.; Iki, N.; Hattori, T.; Miyano, S. Chem. Rev. 2006, 106, 5291.
[6]
Kumar, R.; Sharma, A.; Singh, H.; Suating, P.; Kim, H. S.; Sunwoo, K.; Shim, I.; Gibb, B. C.; Kim, J. S. Chem. Rev. 2019, 119, 9657.
[7]
Pan, Y. C.; Hu, X. Y.; Guo, D. S. Angew. Chem., Int. Ed. 2021, 60, 2768.
[8]
Lai, Z. Z.; Zhao, T.; Sessler, J. L.; He, Q. Coord. Chem. Rev. 2020, 425, 213528.
[9]
Gale, P. A.; Sessler, J. L.; Král, V.; Lynch, V. J. Am. Chem. Soc. 1996, 118, 5140.
[10]
Freeman, W. A.; Mock, W. L.; Shih, N. Y. J. Am. Chem. Soc. 1981, 103, 7367.
[11]
Kim, J.; Jung, I. S.; Kim, S. Y.; Lee, E.; Kang, J. K.; Sakamoto, S.; Yamaguchi, K.; Kim, K. J. Am. Chem. Soc. 2000, 122, 540.
[12]
Lee, J. W.; Samal, S.; Selvapalam, N.; Kim, H. J.; Kim, K. Acc. Chem. Res. 2003, 36, 621.
[13]
Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. Angew. Chem., Int. Ed. 2005, 44, 4844.
[14]
Isaacs, L. Acc. Chem. Res. 2014, 47, 2052.
[15]
Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T. A.; Nakamoto, Y. J. Am. Chem. Soc. 2008, 130, 5022.
[16]
Cragg, P. J.; Sharma, K. Chem. Soc. Rev. 2012, 41, 597.
[17]
Xue, M.; Yang, Y.; Chi, X. D.; Zhang, Z. B.; Huang, F. H. Acc. Chem. Res. 2012, 45, 1294.
[18]
Ogoshi, T.; Yamagishi, T.-A.; Nakamoto, Y. Chem. Rev. 2016, 116, 7937.
[19]
Li, J.; Han, Y.; Chen, C. F. Chin. J. Org. Chem. 2020, 40, 3714. (in Chinese)
[19]
(李晶, 韩莹, 陈传峰, 有机化学, 2020, 40, 3714.)
[20]
Chen, H. Q.; Fan, J. Z.; Hu, X. S.; Ma, J. W.; Wang, S. L.; Li, J.; Yu, Y. H.; Jia, X. S.; Li, C. J. Chem. Sci. 2015, 6, 197.
[21]
Boinski, T.; Cieszkowski, A.; Rosa, B.; Leśniewska, B.; Szumna, A. New J. Chem. 2016, 40, 8892.
[22]
Han, X. N.; Han, Y.; Chen, C. F. J. Am. Chem. Soc. 2020, 142, 8262.
[23]
Lei, S. N.; Xiao, H. Y.; Zeng, Y.; Tung, C. H.; Wu, L. Z.; Cong, H. Angew. Chem., Int. Ed. 2020, 59, 10059.
[24]
Shi, T. H.; Guo, Q. H.; Tong, S.; Wang, M. X. J. Am. Chem. Soc. 2020, 142, 4576.
[25]
Wang, J. Q.; Li, J.; Zhang, G. W.; Chen, C. F. J. Org. Chem. 2018, 83, 11532.
[26]
Bodio, E.; Goze, C. Dyes Pigm. 2019, 160, 700.
[27]
Jean-Gérard, L.; Vasseur, W.; Scherninski, F.; Andrioletti, B. Chem. Commun. 2018, 54, 12914.
[28]
Liu, Z. P.; Jiang, Z. Y.; Yan, M.; Wang, X. Q. Front. Chem. 2019, 7, 712.
[29]
Treibs, A.; Kreuzer, F. H. Justus Liebigs Ann. Chem. 1968, 718, 208.
[30]
Shah, M.; Thangaraj, K.; Soong, M. L.; Wolford, L. T.; Boyer, J. H.; Politzer, I. R.; Pavlopoulos, T. G. Heteroat. Chem. 1990, 1, 389.
[31]
Shao, J. Y.; Sun, H. Y.; Guo, H. M.; Ji, S. M.; Zhao, J. Z.; Wu, W. T.; Yuan, X. L.; Zhang, C. L.; James, T. D. Chem. Sci. 2012, 3, 1049.
[32]
Su, D. D.; Teoh, C. L.; Sahu, S.; Das, R. K.; Chang, Y.-T. Biomaterials 2014, 35, 6078.
[33]
Yu, H. B.; Xiao, Y.; Guo, H. Y.; Qian, X. H. Chem.-Eur. J. 2011, 17, 3179.
[34]
Erande, Y.; Chemate, S.; More, A.; Sekar, N. RSC Adv. 2015, 5, 89482.
[35]
Sun, H. B.; Dong, X. C.; Liu, S. J.; Zhao, Q.; Mou, X.; Yang, H. Y.; Huang, W. J. Phys. Chem. C 2011, 115, 19947.
[36]
Zhang, X. F. J. Photochem. Photobiol., A 2018, 355, 431.
[37]
Boens, N.; Leen, V.; Dehaen, W. Chem. Soc. Rev. 2012, 41, 1130.
[38]
Zhang, C. L.; Han, Z.; Wang, M. J.; Yang, Z. H.; Ran, X. Q.; He, W. J. Dalton Trans. 2018, 47, 2285.
[39]
Zhang, D. K.; Martín, V.; García-Moreno, I.; Costela, A.; Pérez-Ojeda, M. E.; Xiao, Y. Phys. Chem. Chem. Phys. 2011, 13, 13026.
[40]
Huang, J. J.; Fang, Y. Y.; Dehaen, W. Chemosensors 2020, 8, 51.
[41]
Roos, A.; Boron, W. F. Physiol. Rev. 1981, 61, 296.
[42]
Hamilton, G. R. C.; Sahoo, S. K.; Kamila, S.; Singh, N.; Kaur, N.; Hyland, B. W.; Callan, J. F. Chem. Soc. Rev. 2015, 44, 4415.
[43]
Baki, C. N.; Akkaya, E. U. J. Org. Chem. 2001, 66, 1512.
[44]
Han, F. F.; Xu, Y. M.; Jiang, D. C.; Qin, Y.; Chen, H. Y. Anal. Biochem. 2013, 435, 106.
[45]
Yang, C. Y.; Liu, T. T.; Xu, Y. M.; Qin, Y. Sens. Actuators, B 2014, 192, 423.
[46]
Yin, J.; Hu, Y.; Yoon, J. Y. Chem. Soc. Rev. 2015, 44, 4619.
[47]
Li, S. S.; Wang, C.; Luo, Z. J.; Zhu, X. F. Energy Fuels 2020, 34, 12654.
[48]
Asif, M. H.; Nur, O.; Willander, M.; Danielsson, B. Biosens. Bioelectron. 2009, 24, 3379.
[49]
Yue, J.; Li, L.; Cao, L.; Zan, M. H.; Yang, D.; Wang, Z.; Chang, Z. M.; Mei, Q.; Miao, P.; Dong, W. F. ACS Appl. Mater. Interfaces 2019, 11, 44566.
[50]
Cha, N. R.; Moon, S. Y.; Chang, S.-K. Tetrahedron Lett. 2003, 44, 8265.
[51]
Kim, H. J.; Kim, J. S. Tetrahedron Lett. 2006, 47, 7051.
[52]
Nagatoishi, S.; Nojima, T.; Juskowiak, B.; Takenaka, S. Angew. Chem. 2005, 117, 5195.
[53]
Malval, J.-P.; Leray, I.; Valeur, B. New J. Chem. 2005, 29, 1089.
[54]
Cecchi, X.; Wolff, D.; Alvarez, O.; Latorre, R. N. Biophys. J. 1987, 52, 707.
[55]
Ehmann, W. D.; Markesbery, W. R.; Alauddin, M.; Hossain, T. I.; Brubaker, E. H. Neurotoxicology 1986, 7, 195.
[56]
Melnikov, P.; Zanoni, L. Z. Biol. Trace Elem. Res. 2010, 135, 1.
[57]
Depauw, A.; Kumar, N.; Ha-Thi, M.-H.; Leray, I. J. Phys. Chem. A 2015, 119, 6065.
[58]
Li, D. X.; Sun, X.; Huang, J. M.; Wang, Q.; Feng, Y.; Chen, M.; Meng, X. M.; Zhu, M. Z.; Wang, X. Dyes Pigm. 2016, 125, 185.
[59]
Meng, X.; Zhao, J.; Ma, W. Chin. J. Org. Chem. 2020, 40, 276. (in Chinese)
[59]
(孟宪娇, 赵晋忠, 马文兵, 有机化学, 2020, 40, 276.)
[60]
Csokai, V.; Kádár, M.; Ha Mai, D. L. H.; Varga, O.; Tóth, K.; Kubinyi, M.; Grün, A.; Bitter, I. Tetrahedron 2008, 64, 1058.
[61]
Dam, H. H.; Reinhoudt, D. N.; Verboom, W. Chem. Soc. Rev. 2007, 36, 367.
[62]
Bayrakcı, M.; Kursunlu, A. N.; Güler, E.; Ertul, Ş. Dyes Pigm. 2013, 99, 268.
[63]
Wang, C.; Zhao, J. W.; Wang, Y.; Lou, N.; Ma, Q.; Su, X. G. Sens. Actuators, B 2009, 139, 476.
[64]
Sulak, M.; Kursunlu, A. N.; Girgin, B.; Karakuş, Ö. Ö.; Güler, E. J. Photochem. Photobiol., A 2017, 349, 129.
[65]
Bastug, E.; Kursunlu, A. N.; Guler, E. J. Lumin. 2020, 225, 117343.
[66]
Marquezi, M. L.; Roschel, H. A.; Costa, A. S.; Sawada, L. A.; Lancha Jr, A. H. Int. J. Sport Nutr. Exercise Metab. 2003, 13, 65.
[67]
Kugimiya, A.; Fukada, R. Appl. Biochem. Biotechnol. 2015, 176, 1195.
[68]
Lancha, Jr, A. H.; Poortmans,, J. R.; Pereira,, L. O. Cell Biochem. Funct. 2009, 27, 552.
[69]
Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed. 2001, 40, 486.
[70]
Chen, S. H.; Chen, Q.; Luo, S. H.; Cao, X. Y.; Yang, G. X.; Zeng, X. Q.; Wang, C. Y. Chin. J. Org. Chem. 2021, 41, 919. (in Chinese)
[70]
(陈思鸿, 陈淇, 罗时荷, 曹西颖, 杨国贤, 曾晓晴, 汪朝阳, 有机化学, 2021, 41, 919.)
[71]
Lü, Y. J.; Xu, J.; Guo, Y.; Shao, S. J. Chem. Pap. 2011, 65, 553. DOI: 10.2478/s11696-011-0033-2.
[72]
Lü, Y. J.; Xu, J.; Guo, Y.; Shao, S. J. J. Inclusion Phenom. Macrocyclic Chem. 2012, 72, 95.
[73]
Gotor, R.; Costero, A. M.; Gaviña, P.; Gil, S.; Parra, M. Eur. J. Org. Chem. 2013, 2013, 1515.
[74]
Taner, B.; Kursunlu, A. N.; Güler, E. Spectrochim. Acta, Part A 2014, 118, 903.
[75]
Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B. C.; Golab, J. CA-Cancer J. Clin. 2011, 61, 250.
[76]
Cakmak, Y.; Nalbantoglu, T.; Durgut, T.; Akkaya, E. U. Tetrahedron Lett. 2014, 55, 538.
[77]
Meng, L. B.; Zhang, W. Y.; Li, D. Q.; Li, Y.; Hu, X. Y.; Wang, L. Y.; Li, G. G. Chem. Commun. 2015, 51, 14381.
[78]
Horton, P.; Ruban, A. J. Exp. Bot. 2004, 56, 365.
[79]
Meng, L. B.; Li, D. Q.; Xiong, S. H.; Hu, X. Y.; Wang, L. Y.; Li, G. G. Chem. Commun. 2015, 51, 4643.
[80]
Kursunlu, A. N.; Baslak, C. Tetrahedron Lett. 2018, 59, 1958.
[81]
Fan, C. Y.; Wu, W. H.; Yang, C. Chin. J. Org. Chem. 2018, 38, 1377. (in Chinese)
[81]
(范春英, 伍晚花, 杨成, 有机化学, 2018, 38, 1377.)
[82]
Ji, S. M.; Wu, W. H.; Wu, W. T.; Guo, H. M.; Zhao, J. Z. Angew. Chem., Int. Ed. 2011, 50, 1626.
[83]
Fan, C. Y.; Wu, W. H.; Chruma, J. J.; Zhao, J. Z.; Yang, C. J. Am. Chem. Soc. 2016, 138, 15405.
[84]
Sun, N. N.; Xiao, X.; Li, W. J.; Jiang, J. Z. Adv. Sci. 2015, 2, 1500082.
[85]
Alnajjar, M. A.; Bartelmess, J.; Hein, R.; Ashokkumar, P.; Nilam, M.; Nau, W. M.; Rurack, K.; Hennig, A. Beilstein J. Org. Chem. 2018, 14, 1961.
[86]
Li, H.; Wu, J.; Yin, J. F.; Wang, H.; Wu, Y. Q.; Kuang, G. C. Macromol. Rapid Commun. 2019, 40, 1800714.
[87]
Zhou, L. L.; Chen, J. Y.; Li, X. Y.; Li, H.; Wang, H.; Wang, D. G.; Kuang, G. C. Macromol. Rapid Commun. 2019, 40, 1900182. DOI: 10.1002/marc.201900182.
文章导航

/