综述与进展

壳聚糖负载铜催化剂在有机反应中的应用研究进展

  • 张瑶瑶 ,
  • 周丽洁 ,
  • 韩彪 ,
  • 李维双 ,
  • 李博解 ,
  • 朱磊
展开
  • a 湖北工程学院化学与材料科学学院 湖北孝感 432000
    b 湖北大学材料科学与工程学院 武汉 430062
    c 华中科技大学生物无机化学与药物湖北省重点实验室 武汉 430074

收稿日期: 2021-07-31

  修回日期: 2021-09-11

  网络出版日期: 2021-09-27

基金资助

国家自然科学基金(21774029); 国家自然科学基金(22108065); 湖北省自然科学基金(2019CFB354); 湖北省高等学校优秀中青年科技创新团队计划(T201816); 孝感市自然科学计划(XGKJ2020010053); 孝感市自然科学计划(XGKJ2021010009)

Research Progress of Chitosan Supported Copper Catalyst in Organic Reactions

  • Yaoyao Zhang ,
  • Lijie Zhou ,
  • Biao Han ,
  • Weishuang Li ,
  • Bojie Li ,
  • Lei Zhu
Expand
  • a School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, Hubei 432000
    b School of Materials Science and Engineering, Hubei University, Wuhan 430062
    c Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan 430074

Received date: 2021-07-31

  Revised date: 2021-09-11

  Online published: 2021-09-27

Supported by

National Natural Science Foundation of China(21774029); National Natural Science Foundation of China(22108065); Natural Science Foundation of Hubei Province(2019CFB354); Young and Middle-Aged Science and Technology Innovation Team Project in Higher Education Institutions of Hubei Province(T201816); Natural Science Foundation of Xiaogan City(XGKJ2020010053); Natural Science Foundation of Xiaogan City(XGKJ2021010009)

摘要

壳聚糖是由甲壳素脱乙酰化而得, 是一种丰富可再生的生物质资源. 壳聚糖分子结构中含有大量的羟基、氨基, 与金属纳米粒子或金属离子具有较强的鳌合能力, 被广泛用作载体制备异相催化剂. 近年来, 壳聚糖负载铜催化剂被成功应用于各种不同类型的有机反应中, 不仅具有反应活性高、选择性好、易于分离回收等优点, 而且能够多次循环再利用, 在降低反应成本的同时, 也提升了实际的工业应用价值. 因此, 从不同类型壳聚糖负载铜催化剂的制备出发, 综述其催化的各种类型的有机反应, 主要涉及C—C键和C—X键的构建、点击化学及氧化还原反应等类型, 促进今后壳聚糖及其衍生物负载催化剂更加广泛的应用.

本文引用格式

张瑶瑶 , 周丽洁 , 韩彪 , 李维双 , 李博解 , 朱磊 . 壳聚糖负载铜催化剂在有机反应中的应用研究进展[J]. 有机化学, 2022 , 42(1) : 33 -53 . DOI: 10.6023/cjoc202107066

Abstract

Chitosan is obtained by deacetylation of chitin and is a kind of abundant renewable biomass resource. The molecular structure of chitosan contains a large number of hydroxyl and amino groups, which have strong bonding ability with metal nanoparticles or metal ions. Thus it has been widely used to support various metal particles for the preparation of catalysts. In recent years, chitosan supported copper catalyst has been successfully applied in various types of organic reactions. It has the advantages of high reactivity, good selectivity, easy separation, and can also be reused for many times, which reduces the reaction cost and improves the actual industrial application value. Therefore, based on the preparation of different types of chitosan supported copper catalysts, various types of organic reactions are reviewed, mainly involving the constructions of C—C bond and C—X bond, click chemistry and oxidation/reduction reactions. It will promote the application of chitosan and its derivatives-supported catalysts in the future.

参考文献

[1]
Anamika, R. P.; Upasana, S. S.; Munira, M.; Chintan, B. J. Polym. Res. 2017, 24, 1.
[2]
Munawar, A. M.; Jaweria, T. M. S.; Kishor, M. W.; Ellen, K. W. Pharmaceutics 2017, 9, 53.
[3]
Mohammed, A. LWT-Food Sci. Technol. 2010, 43, 837.
[4]
Prashanth, K. V. H.; Tharanathan, R. N. Trends Food Sci. Technol. 2007, 18, 117.
[5]
Choi, C.; Nam, J. P.; Nah, J. W. J. Ind. Eng. Chem. 2016, 33, 1.
[6]
Alicia, A.; Naimah, Z.; Ezeddine, H.; Brahim, H.; Fabien, B.; Damien, O.; Francois, C.; Florence, F.; Olivier, H. Molecules 2019, 24, 3009.
[7]
Wang, W.; Meng, Q.; Li, Q.; Liu, J.; Zhou, M.; Jin, Z.; Zhao, K. Int. J. Mol. Sci. 2020, 21, 487.
[8]
Pakdel, P. M.; Peighambardoust, S. J. Carbohydr. Polym. 2018, 201, 264.
[9]
Kumar, M. N. V. R.; Muzzarelli, R. A. A.; Muzzarelli, C.; Sashiwa, H.; Domb, A. J. Chem. Rev. 2004, 104, 6017.
[10]
Mourya, V. K.; Inamdar, N. N. React. Funct. Polym. 2008, 68, 1013.
[11]
Jayakumar, R.; Prabaharan, M.; Reis, R. L.; Mano, J. F. Carbohydr. Polym. 2005, 62, 142.
[12]
Guo, Z.; Xing, R.; Liu, S.; Zhong, Z.; Ji, X.; Wang, L.; Li, P. Carbohydr. Res. 2007, 342, 1329.
[13]
Shepherd, R.; Reader, S.; Falshaw, A. Glycoconjugate J. 1997, 14, 535.
[14]
Ren, L.; Yan, X.; Zhou, J.; Tong, J.; Su, X. Int. J. Biol. Macromol. 2017, 105, 1636.
[15]
Huang, H.; Yuan, Q.; Yang, X. Colloids Surf., B 2004, 39, 31.
[16]
Ahmed, T. A.; Aljaeid, B. M. Drug Des., Dev. Ther. 2016, 10, 483.
[17]
Hussein, M. H. M.; El-Hady, M. F.; Sayed, W. M.; Hefni, H. Polym. Sci., Ser. A 2012, 54, 113.
[18]
Pereira, F. S.; Lanfredi, S.; González, E. R. P.; Agostini, D. L. D. S.; Gomes, H. M.; Medeiros, R. S. J. Therm. Anal. Calorim. 2017, 129, 291.
[19]
Hardy, J. J. E.; Hubert, S.; Macquarrie, D. J.; Wilson, A. J. Green Chem. 2004, 6, 53.
[20]
Sahu, P. K.; Sahu, P. K.; Gupta, S. K.; Agarwal, D. D. Ind. Eng. Chem. Res. 2014, 53, 2085.
[21]
Baig, R. B. N.; Varma, R. S. Green Chem. 2013, 15, 1839.
[22]
Molnár, Á. Coord. Chem. Rev. 2019, 388, 126.
[23]
Sakthivel, B.; Dhakshinamoorthy, A. J. Colloid Interface Sci. 2017, 485, 75.
[24]
Veisi, H.; Ozturk, T.; Karmakar, B.; Tamoradi, T.; Hemmati, S. Carbohydr. Polym. 2020, 235, 115966.
[25]
Wang, S.; Zhou, H.; Song, S.; Wang, J. Chin. J. Org. Chem. 2015, 35, 85. (in Chinese)
[25]
(王硕, 周宏勇, 宋沙沙, 王家喜, 有机化学, 2015, 35, 85.)
[26]
Tian, T.; Li, Z.; Li, C. Green Chem. 2021, 23, 6789.
[27]
Ding, L.; Li, J.; Jiang, R.; Wang, L.; Song, W.; Zhu, L. Chin. J. Polym. Sci. 2019, 37, 1130.
[28]
Sun, W.; Xia, C. G.; Wang, H. New J. Chem. 2002, 26, 755.
[29]
Zeng, M.; Sun, X.; Qi, C.; Zhang, X. Kinet. Catal. 2013, 54, 716.
[30]
Zhao, H.; Xu, J.; Wang, T. Appl. Catal., A 2015, 502, 188.
[31]
Shen, C.; Xu, J.; Ying, B.; Zhang, P. ChemCatChem 2016, 8, 3560.
[32]
Zhu, L.; Wang, L.; Li, B.; Fu, B. Q.; Zhang, C. P.; Li, W. Chem. Commun. 2016, 52, 6371.
[33]
Shen, J.; Xu, J.; Huang, L.; Zhu, Q.; Zhang, P. Adv. Synth. Catal. 2020, 362, 230.
[34]
Yuan, J.; Liu, S.; Qu, L. Adv. Synth. Catal. 2017, 359, 4197.
[35]
Ramesh, B.; Reddy, C. R.; Kumar, G. R. Reddy, B. V. S. Tetrahedron Lett. 2018, 59, 628.
[36]
Dekamin, M. G.; Kazemi, E.; Karimi, Z.; Mohammadalipoor, M.; Naimi-Jamal, M. R. Int. J. Biol. Macromol. 2016, 93, 767.
[37]
Anuradha; Layek, S.; Agrahari, B.; Pathak, D. D. ChemistrySelect 2017, 2, 6865.
[38]
Goncalves, F. J.; Kamal, F.; Gaucher, A.; Gil, R.; Bourdreux, F.; Martineau-Corcos, C.; Gurgel, L. V. A.; Gil, L. F.; Prim, D. Carbohydr. Polym. 2018, 181, 1206.
[39]
Kaur, P.; Kumar, B.; Kumar, V.; Kumar, R. Tetrahedron Lett. 2018, 59, 1986.
[40]
Liu, Q.; Xu, M.; Zhao, J.; Yang, Z.; Qi, C.; Zeng, M.; Xia, R.; Cao, X.; Wang, B. Int. J. Biol. Macromol. 2018, 113, 1308.
[41]
Lo, J. C., Kim, D.; Pan, C.; Edwards, J. T.; Yabe, Y.; Gui, J.; Qin, T.; Gutiérrez, S.; Giacoboni, J.; Smith, M. W.; Holland, P. L.; Baran, P. S. J. Am. Chem. Soc. 2017, 139, 2484.
[42]
Bodhak, C.; Kundu, A.; Pramanik, A. Tetrahedron Lett. 2015, 56, 419.
[43]
Anuradha; Kumari, S.; Pathak, D. Tetrahedron Lett. 2015, 56, 4135.
[44]
Yang, B.; Mao, Z.; Zhu, X.; Wan, Y. Catal. Commun. 2015, 60, 92.
[45]
Liu, X.; Chang, S.; Chen, X.; Ge, X.; Qian, C. New J. Chem. 2018, 42, 16013.
[46]
Narjes, M.; Nasrollahzadeh, M.; Asghar, T.-K.; Rajender, S. V.; Mohammadreza, S. Carbohydr. Polym. 2020, 232, 115819.
[47]
Nasrollahzadeh, M.; Motahharifar, N.; Nezafat, Z.; Shokouhimehr, M. J. Mol. Liq. 2021, 341, 117398.
[48]
Shen, C.; Xu, J.; Yu, W.; Zhang, P. Green Chem. 2014, 16, 3007.
[49]
Frindy, S.; Kadib, A.; Lahcini, M.; Primo, A.; García, H. ChemCatChem 2015, 7, 3307.
[50]
Hajipour, A. R.; Hosseini, S. M.; Jajarmi, S. New J. Chem. 2017, 41, 7447.
[51]
Cheng, L.; Ge, X.; Liu, X.; Feng, Y. Chin. J. Org. Chem. 2020, 40, 2008. (in Chinese)
[51]
(成琳, 葛新, 刘学民, 冯云辉, 有机化学, 2020, 40, 2008.)
[52]
Ying, B.; Xu, J.; Zhu, X.; Shen, C.; Zhang, P. ChemCatChem 2016, 8, 1.
[53]
Li, B.; Wang, L.; Qin, C.; Zhu, L. Catal. Commun. 2016, 86, 23.
[54]
Wen, W.; Han, B.; Yan, F.; Ding, L.; Li, B.; Wang, L.; Zhu, L. Nanomaterials 2018, 8, 326.
[55]
Zhou, L.; Han, B.; Zhang, Y.; Li, B.; Wang, L.; Wang, J.; Wang, X.; Zhu, L. Catal. Lett. 2021, 151, 3220.
[56]
Zhu, L.; Li, B.; Wang, S.; Wang, W.; Wang, L.; Ding, L.; Qin, C. Polymers 2018, 10, 385.
[57]
Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 113, 2056.
[58]
Hennessy, E. T.; Betley, T. A. Science 2013, 340, 591.
[59]
Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Fréchet, J. M. J.; Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2004, 116, 4018.
[60]
Shen, J.; Xu, J.; He, L.; Ouyang, Y.; Huang, L.; Li, W.; Zhu, Q.; Zhang, P. Org. Lett. 2021, 23, 1204.
[61]
Shen, J.; Xu, J.; Zhu, Q.; Zhang, P. Org. Biomol. Chem. 2021, 19, 3119.
[62]
Chen, L.; Zhang, Y.; Ding, G.; Ba, M.; Guo, Y.; Zou, Z Molecules 2013, 18, 1477.
[63]
Chtchigrovsky, M.; Primo, A.; Gonzalez, P.; Molvinger, K.; Robitzer, M.; Quignard, F.; Taran, F. Angew. Chem., Int. Ed. 2009, 48, 5916.
[64]
Martina, K.; Leonhardt, S. E. S.; Ondruschka, B.; Curini, M.; Binello, A.; Cravotto, G. J. Mol. Catal. A: Chem. 2011, 334, 60.
[65]
Baig, R. B. N.; Varma, R. S. Green Chem. 2013, 15, 1839.
[66]
Jiang, Y.; Wang, Y.; Han, Q.; Zhu, R.; Xiong, X. Chin. J. Org. Chem. 2014, 34, 2068. (in Chinese)
[66]
(江云兵, 王彦龙, 韩骞, 朱荣俊, 熊兴泉, 有机化学, 2014, 34, 2068.)
[67]
Chetia, M.; Ali, A. A.; Bhuyan, D.; Saikia, L.; Sarma, D. New J. Chem. 2015, 39, 5902.
[68]
Kumar, B. S. P. A.; Reddy, K. H. V.; Karnakar, K.; Satish, G.; Nageswar, Y. V. D. Tetrahedron Lett. 2015, 56, 1968.
[69]
Mahdavinia, G. R.; Soleymani, M.; Nikkhoo, M.; Farnia, S. M. F.; Amini, M. New J. Chem. 2017, 41, 3821.
[70]
Jennah, O.; Beniazza, R.; Lozach, C.; Jardel, D.; Molton, F.; Duboc, C.; Buffeteau, T.; Kadib, A. E.; Lastécouères, D.; Lahcini, M.; Vincent, J.-M. Adv. Synth. Catal. 2018, 360, 4615.
[71]
Zhang, Y.; Han, B.; Zhou, L.; Wang, M.; Li, B.; Wang, L.; Zhu, L. Acta Polym. Sin. 2021, 52, 723. (in Chinese)
[71]
(张瑶瑶, 韩彪, 周丽洁, 王明宇, 李博解, 汪连生, 朱磊, 高分子学报, 2021, 52, 723.)
[72]
Antony, R.; David, S. T.; Karuppasamy, K.; Saravanan, K.; Thanikaikarasan, S.; Balakumar, S. J. Surf. Eng. Mater. Adv. Technol. 2012, 2, 284.
[73]
Fakhri, A.; Naghipour, A. Mater. Technol. 2016, 31, 846.
[74]
Fakhri, A; Naghipour, A. Environ. Prog. Sustainable Energy 2018, 37, 1626.
[75]
Souza, J. F.; Silva, G. T.; Fajardo, A. R. Carbohydr. Polym. 2017, 161, 187.
[76]
Ali, F.; Khan, S. B.; Kamal, T.; Alamry, K. A.; Bakhsh, E. M.; Asiri, A. M.; Sobahi, T. R. A. Carbohydr. Polym. 2018, 192, 217.
[77]
Guo, Y.; Dai, M.; Zhu, Z.; Chen, Y.; He, H.; Qin, T. Appl. Surf. Sci. 2019, 480, 601.
文章导航

/