可见光/镍协同催化烯烃和炔烃双官能团化反应研究进展
网络出版日期: 2021-09-30
基金资助
国家自然科学基金(21991123); 国家自然科学基金(21971036); 国家自然科学基金(21901036); 中央高校基本科研业务费专项资金和东华大学研究生创新基金(CUSF-DH-D-2020057)
Recent Advances in Photoredox/Nickel Dual-Catalyzed Difunctionalization of Alkenes and Alkynes
Online published: 2021-09-30
Supported by
National Natural Science Foundation of China(21991123); National Natural Science Foundation of China(21971036); National Natural Science Foundation of China(21901036); Fundamental Research Funds for the Central Universities and the Graduate Student Innovation Fund of Donghua University(CUSF-DH-D-2020057)
徐磊 , 王方 , 陈凡 , 朱圣卿 , 储玲玲 . 可见光/镍协同催化烯烃和炔烃双官能团化反应研究进展[J]. 有机化学, 2022 , 42(1) : 1 -15 . DOI: 10.6023/cjoc202109002
The merger of visible-light photoredox catalysis and nickel catalysis makes it possible to forge challenging chemical bonds under mild conditions. Nevertheless, most of these transformations only construct a single carbon-carbon bond or carbon-heteroatom bond in one operation. In recent years, photoredox/nickel dual catalysis has attracted widespread attention in the field of catalytic difunctionalization of alkenes and alkynes. The synergistic cascade mode enables the construction of multiple chemical bonds in one single pot, providing a mild, efficient and selective protocol for the rapid assembly of complex structural motifs. The latest progress in the photoredox/nickel dual-catalyzed difunctionalization reactions of olefins and alkynes is summarized.
[1] | Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299. |
[2] | Ananikov, V. P. ACS Catal. 2015, 5, 1964. |
[3] | Cheng, L.; Zhou, Q. Acta Chim. Sinica 2020, 78, 1017. (in Chinese) |
[3] | (程磊, 周其林, 化学学报, 2020, 78, 1017.) |
[4] | Zhu, C.; Yue, H.; Jia, J.; Rueping, M. Angew. Chem., nt. Ed. 2021, 60, 17810. |
[5] | Fu, G. C. ACS Cent. Sci. 2017, 3, 692. |
[6] | Choi, J.; Fu, G. C. Science 2017, 356, 1265. |
[7] | Xuan, J.; Xiao, W.-J. Angew. Chem.,Int. Ed. 2012, 51, 6828. |
[8] | Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322. |
[9] | Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075. |
[10] | Bell, J. D.; Murphy, J. A. Chem. Soc. Rev. 2021, 50, 9540. |
[11] | Gui, Y.-Y.; Sun, L.; Lu, Z.-P.; Yu, D.-G. Org. Chem. Front. 2016, 3, 522. |
[12] | Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 0052. |
[13] | Milligan, J. A.; Phelan, J. P.; Badir, S. O.; Molander, G. A. Angew. Chem., nt. Ed. 2019, 58, 6152. |
[14] | Zhu, C.; Yue, H.; Chu, L.; Rueping, M. Chem. Sci. 2020, 11, 4051. |
[15] | Zhu, S.; Zhao, X.; Li, H.; Chu, L. Chem. Soc. Rev. 2021, 50, 10836. |
[16] | Plesniak, M. P.; Huang, H.-M.; Procter, D. J. Nat. Rev. Chem. 2017, 1, 0077. |
[17] | McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981. |
[18] | Dhungana, R. K.; KC, S.; Basnet, P.; Giri, R. Chem. Rec. 2018, 18, 1314. |
[19] | Giri, R.; Kc, S. J. Org. Chem. 2018, 83, 3013. |
[20] | Zhang, J.-S.; Liu, L.; Chen, T.; Han, L.-B. Chem.-Asian J. 2018, 13, 2277. |
[21] | Derosa, J.; Apolinar, O.; Kang, T.; Tran, V. T.; Engle, K. M. Chem. Sci. 2020, 11, 4287. |
[22] | Tu, H.-Y.; Zhu, S.; Qing, F.-L.; Chu, L. Synthesis 2020, 52, 1346. |
[23] | Qi, X.; Diao, T. ACS Catal. 2020, 10, 8542. |
[24] | Luo, Y.-C.; Xu, C.; Zhang, X. Chin. J. Chem. 2020, 38, 1371. |
[25] | Choi, J.; Fu, G. C. Science 2017, 356, eaaf7230. |
[26] | Merino, E.; Nevado, C. Chem. Soc. Rev. 2014, 43, 6598. |
[27] | Lin, J.; Song, R.-J.; Hu, M.; Li, J.-H. Chem. Rec. 2019, 19, 440. |
[28] | Wang, F.; Chen, P.; Liu, G. Acc. Chem. Res. 2018, 51, 2036. |
[29] | Li, Z.-L.; Fang, G.-C.; Gu, Q.-S.; Liu, X.-Y. Chem. Soc. Rev. 2020, 49, 32. |
[30] | Liu, W.; Kong, W. Org. Chem. Front. 2020, 7, 3941. |
[31] | Diccianni, J.; Lin, Q.; Diao, T. Acc. Chem. Res. 2020, 53, 906. |
[32] | Ping, Y.; Kong, W. Synthesis 2020, 52, 979. |
[33] | Poremba, K. E.; Dibrell, S. E.; Reisman, S. E. ACS Catal. 2020, 10, 8237. |
[34] | Badir, S. O.; Molander, G. A. Chem 2020, 6, 1327. |
[35] | Yin, G.; Mu, X.; Liu, G. Acc. Chem. Res. 2016, 49, 2413. |
[36] | Tasker, S. Z.; Jamison, T. F. J. Am. Chem. Soc. 2015, 137, 9531. |
[37] | Harper, M. J.; Emmett, E. J.; Bower, J. F.; Russell, C. A. J. Am. Chem. Soc. 2017, 139, 12386. |
[38] | Li, J.; Luo, Y.; Cheo, H. W.; Lan, Y.; Wu, J. Chem 2019, 5, 192. |
[39] | Latrache, M.; Hoffmann, N. Chem. Soc. Rev. 2021, 50, 7418. |
[40] | Zheng, S.; Gutierrez-Bonet, A.; Molander, G. A. Chem 2019, 5, 339. |
[41] | Choi, G. J.; Knowles, R. R. J. Am. Chem. Soc. 2015, 137, 9226. |
[42] | Zheng, S.; Zhang, S.-Q.; Saeednia, B.; Zhou, J.; Anna, J. M.; Hong, X.; Molander, G. A. Chem. Sci. 2020, 11, 4131. |
[43] | Weires, N. A.; Slutskyy, Y.; Overman, L. E. Angew. Chem., nt. Ed. 2019, 58, 8561. |
[44] | Guo, L.; Tu, H. Y.; Zhu, S.; Chu, L. Org. Lett. 2019, 21, 4771. |
[45] | Garcia-Dominguez, A.; Mondal, R.; Nevado, C. Angew. Chem., nt. Ed. 2019, 58, 12286. |
[46] | Campbell, M. W.; Compton, J. S.; Kelly, C. B.; Molander, G. A. J. Am. Chem. Soc. 2019, 141, 20069. |
[47] | Mega, R. S.; Duong, V. K.; Noble, A.; Aggarwal, V. K. Angew. Chem., nt. Ed. 2020, 59, 4375. |
[48] | Sun, S. Z.; Duan, Y.; Mega, R. S.; Somerville, R. J.; Martin, R. Angew. Chem., nt. Ed. 2020, 59, 4370. |
[49] | Feng, X.; Guo, L.; Zhu, S.; Chu, L. Synlett 2021, 32, 1519. |
[50] | Zheng, S.; Chen, Z.; Hu, Y.; Xi, X.; Liao, Z.; Li, W.; Yuan, W. Angew. Chem., nt. Ed. 2020, 59, 17910. |
[51] | Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687. |
[52] | Qin, Q.; Jiang, H.; Hu, Z.; Ren, D.; Yu, S. Chem. Rec. 2017, 17, 754. |
[53] | Xu, S.; Chen, H.; Zhou, Z.; Kong, W. Angew. Chem., nt. Ed. 2021, 60, 7405. |
[54] | Campbell, M. W.; Yuan, M.; Polites, V. C.; Gutierrez, O.; Molander, G. A. J. Am. Chem. Soc. 2021, 143, 3901. |
[55] | Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Xiao, W.-J.; Chen, J.-R. Acc. Chem. Res. 2020, 53, 1066. |
[56] | Huang, L.; Zhu, C.; Yi, L.; Yue, H.; Kancherla, R.; Rueping, M. Angew. Chem.,Int. Ed. 2020, 59, 457. |
[57] | Zhang, Z.; Hu, X. ACS Catal. 2020, 10, 777. |
[58] | Jiang, H.; Yu, X.; Daniliuc, C. G.; Studer, A. Angew. Chem., nt. Ed. 2021, 60, 14399. |
[59] | Guo, L.; Yuan, M.; Zhang, Y.; Wang, F.; Zhu, S.; Gutierrez, O.; Chu, L. J. Am. Chem. Soc. 2020, 142, 20390. |
[60] | Fan, P.; Lan, Y.; Zhang, C.; Wang, C. J. Am. Chem. Soc. 2020, 142, 2180. |
[61] | Jordan, V. C. J. Med. Chem. 2003, 46, 1081. |
[62] | Chinchilla, R.; Nájera, C. Chem. Rev. 2014, 114, 1783. |
[63] | Jackson, E. P.; Malik, H. A.; Sormunen, G. J.; Baxter, R. D.; Liu, P.; Wang, H.; Shareef, A.-R.; Montgomery, J. Acc. Chem. Res. 2015, 48, 1736. |
[64] | Wille, U. Chem. Rev. 2013, 113, 813. |
[65] | Xu, T.; Hu, X. Angew. Chem., nt. Ed. 2015, 54, 1307. |
[66] | Guo, L.; Song, F.; Zhu, S.; Li, H.; Chu, L. Nat. Commun. 2018, 9, 4543. |
[67] | Li, H.; Guo, L.; Feng, X.; Huo, L.; Zhu, S.; Chu, L. Chem. Sci. 2020, 11, 4904. |
[68] | Zhu, C.; Yue, H.; Maity, B.; Atodiresei, I.; Cavallo, L.; Rueping, M. Nat. Catal. 2019, 2, 678. |
[69] | Yue, H.; Zhu, C.; Kancherla, R.; Liu, F.; Rueping, M. Angew. Chem., nt. Ed. 2020, 59, 5738. |
[70] | Zhang, Y.; Tanabe, Y.; Kuriyama, S.; Nishibayashi, Y. J. Org. Chem. 2021, 86, 12577. |
[71] | Xu, L.; Zhu, S.; Huo, L.; Chen, F.; Yu, W.; Chu, L. Org. Chem. Front. 2021, 8, 2924. |
/
〈 |
|
〉 |