综述与进展

可见光/镍协同催化烯烃和炔烃双官能团化反应研究进展

  • 徐磊 ,
  • 王方 ,
  • 陈凡 ,
  • 朱圣卿 ,
  • 储玲玲
展开
  • 东华大学化学化工与生物工程学院 先进低维材料中心 上海 201620

网络出版日期: 2021-09-30

基金资助

国家自然科学基金(21991123); 国家自然科学基金(21971036); 国家自然科学基金(21901036); 中央高校基本科研业务费专项资金和东华大学研究生创新基金(CUSF-DH-D-2020057)

Recent Advances in Photoredox/Nickel Dual-Catalyzed Difunctionalization of Alkenes and Alkynes

  • Lei Xu ,
  • Fang Wang ,
  • Fan Chen ,
  • Shengqing Zhu ,
  • Lingling Chu
Expand
  • Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620
* Corresponding authors. E-mail: ;

Online published: 2021-09-30

Supported by

National Natural Science Foundation of China(21991123); National Natural Science Foundation of China(21971036); National Natural Science Foundation of China(21901036); Fundamental Research Funds for the Central Universities and the Graduate Student Innovation Fund of Donghua University(CUSF-DH-D-2020057)

摘要

可见光氧化还原催化与金属镍催化的联姻, 使得在极为温和条件下构建挑战性化学键成为可能. 然而, 大多数协同催化体系只能构建单一的碳-碳键或碳-杂原子键. 近些年来, 可见光/镍协同催化在烯烃及炔烃分子间双官能团化反应领域引起了广泛关注. 该协同催化级联模式可以一步构建多个化学键, 为复杂结构单元的快速高效构筑提供了温和且高选择性的方法. 对可见光/镍协同催化烯烃和炔烃分子间双官能团化反应的最新研究进展进行了概述.

本文引用格式

徐磊 , 王方 , 陈凡 , 朱圣卿 , 储玲玲 . 可见光/镍协同催化烯烃和炔烃双官能团化反应研究进展[J]. 有机化学, 2022 , 42(1) : 1 -15 . DOI: 10.6023/cjoc202109002

Abstract

The merger of visible-light photoredox catalysis and nickel catalysis makes it possible to forge challenging chemical bonds under mild conditions. Nevertheless, most of these transformations only construct a single carbon-carbon bond or carbon-heteroatom bond in one operation. In recent years, photoredox/nickel dual catalysis has attracted widespread attention in the field of catalytic difunctionalization of alkenes and alkynes. The synergistic cascade mode enables the construction of multiple chemical bonds in one single pot, providing a mild, efficient and selective protocol for the rapid assembly of complex structural motifs. The latest progress in the photoredox/nickel dual-catalyzed difunctionalization reactions of olefins and alkynes is summarized.

参考文献

[1]
Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299.
[2]
Ananikov, V. P. ACS Catal. 2015, 5, 1964.
[3]
Cheng, L.; Zhou, Q. Acta Chim. Sinica 2020, 78, 1017. (in Chinese)
[3]
(程磊, 周其林, 化学学报, 2020, 78, 1017.)
[4]
Zhu, C.; Yue, H.; Jia, J.; Rueping, M. Angew. Chem., nt. Ed. 2021, 60, 17810.
[5]
Fu, G. C. ACS Cent. Sci. 2017, 3, 692.
[6]
Choi, J.; Fu, G. C. Science 2017, 356, 1265.
[7]
Xuan, J.; Xiao, W.-J. Angew. Chem.,Int. Ed. 2012, 51, 6828.
[8]
Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
[9]
Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
[10]
Bell, J. D.; Murphy, J. A. Chem. Soc. Rev. 2021, 50, 9540.
[11]
Gui, Y.-Y.; Sun, L.; Lu, Z.-P.; Yu, D.-G. Org. Chem. Front. 2016, 3, 522.
[12]
Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 0052.
[13]
Milligan, J. A.; Phelan, J. P.; Badir, S. O.; Molander, G. A. Angew. Chem., nt. Ed. 2019, 58, 6152.
[14]
Zhu, C.; Yue, H.; Chu, L.; Rueping, M. Chem. Sci. 2020, 11, 4051.
[15]
Zhu, S.; Zhao, X.; Li, H.; Chu, L. Chem. Soc. Rev. 2021, 50, 10836.
[16]
Plesniak, M. P.; Huang, H.-M.; Procter, D. J. Nat. Rev. Chem. 2017, 1, 0077.
[17]
McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.
[18]
Dhungana, R. K.; KC, S.; Basnet, P.; Giri, R. Chem. Rec. 2018, 18, 1314.
[19]
Giri, R.; Kc, S. J. Org. Chem. 2018, 83, 3013.
[20]
Zhang, J.-S.; Liu, L.; Chen, T.; Han, L.-B. Chem.-Asian J. 2018, 13, 2277.
[21]
Derosa, J.; Apolinar, O.; Kang, T.; Tran, V. T.; Engle, K. M. Chem. Sci. 2020, 11, 4287.
[22]
Tu, H.-Y.; Zhu, S.; Qing, F.-L.; Chu, L. Synthesis 2020, 52, 1346.
[23]
Qi, X.; Diao, T. ACS Catal. 2020, 10, 8542.
[24]
Luo, Y.-C.; Xu, C.; Zhang, X. Chin. J. Chem. 2020, 38, 1371.
[25]
Choi, J.; Fu, G. C. Science 2017, 356, eaaf7230.
[26]
Merino, E.; Nevado, C. Chem. Soc. Rev. 2014, 43, 6598.
[27]
Lin, J.; Song, R.-J.; Hu, M.; Li, J.-H. Chem. Rec. 2019, 19, 440.
[28]
Wang, F.; Chen, P.; Liu, G. Acc. Chem. Res. 2018, 51, 2036.
[29]
Li, Z.-L.; Fang, G.-C.; Gu, Q.-S.; Liu, X.-Y. Chem. Soc. Rev. 2020, 49, 32.
[30]
Liu, W.; Kong, W. Org. Chem. Front. 2020, 7, 3941.
[31]
Diccianni, J.; Lin, Q.; Diao, T. Acc. Chem. Res. 2020, 53, 906.
[32]
Ping, Y.; Kong, W. Synthesis 2020, 52, 979.
[33]
Poremba, K. E.; Dibrell, S. E.; Reisman, S. E. ACS Catal. 2020, 10, 8237.
[34]
Badir, S. O.; Molander, G. A. Chem 2020, 6, 1327.
[35]
Yin, G.; Mu, X.; Liu, G. Acc. Chem. Res. 2016, 49, 2413.
[36]
Tasker, S. Z.; Jamison, T. F. J. Am. Chem. Soc. 2015, 137, 9531.
[37]
Harper, M. J.; Emmett, E. J.; Bower, J. F.; Russell, C. A. J. Am. Chem. Soc. 2017, 139, 12386.
[38]
Li, J.; Luo, Y.; Cheo, H. W.; Lan, Y.; Wu, J. Chem 2019, 5, 192.
[39]
Latrache, M.; Hoffmann, N. Chem. Soc. Rev. 2021, 50, 7418.
[40]
Zheng, S.; Gutierrez-Bonet, A.; Molander, G. A. Chem 2019, 5, 339.
[41]
Choi, G. J.; Knowles, R. R. J. Am. Chem. Soc. 2015, 137, 9226.
[42]
Zheng, S.; Zhang, S.-Q.; Saeednia, B.; Zhou, J.; Anna, J. M.; Hong, X.; Molander, G. A. Chem. Sci. 2020, 11, 4131.
[43]
Weires, N. A.; Slutskyy, Y.; Overman, L. E. Angew. Chem., nt. Ed. 2019, 58, 8561.
[44]
Guo, L.; Tu, H. Y.; Zhu, S.; Chu, L. Org. Lett. 2019, 21, 4771.
[45]
Garcia-Dominguez, A.; Mondal, R.; Nevado, C. Angew. Chem., nt. Ed. 2019, 58, 12286.
[46]
Campbell, M. W.; Compton, J. S.; Kelly, C. B.; Molander, G. A. J. Am. Chem. Soc. 2019, 141, 20069.
[47]
Mega, R. S.; Duong, V. K.; Noble, A.; Aggarwal, V. K. Angew. Chem., nt. Ed. 2020, 59, 4375.
[48]
Sun, S. Z.; Duan, Y.; Mega, R. S.; Somerville, R. J.; Martin, R. Angew. Chem., nt. Ed. 2020, 59, 4370.
[49]
Feng, X.; Guo, L.; Zhu, S.; Chu, L. Synlett 2021, 32, 1519.
[50]
Zheng, S.; Chen, Z.; Hu, Y.; Xi, X.; Liao, Z.; Li, W.; Yuan, W. Angew. Chem., nt. Ed. 2020, 59, 17910.
[51]
Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687.
[52]
Qin, Q.; Jiang, H.; Hu, Z.; Ren, D.; Yu, S. Chem. Rec. 2017, 17, 754.
[53]
Xu, S.; Chen, H.; Zhou, Z.; Kong, W. Angew. Chem., nt. Ed. 2021, 60, 7405.
[54]
Campbell, M. W.; Yuan, M.; Polites, V. C.; Gutierrez, O.; Molander, G. A. J. Am. Chem. Soc. 2021, 143, 3901.
[55]
Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Xiao, W.-J.; Chen, J.-R. Acc. Chem. Res. 2020, 53, 1066.
[56]
Huang, L.; Zhu, C.; Yi, L.; Yue, H.; Kancherla, R.; Rueping, M. Angew. Chem.,Int. Ed. 2020, 59, 457.
[57]
Zhang, Z.; Hu, X. ACS Catal. 2020, 10, 777.
[58]
Jiang, H.; Yu, X.; Daniliuc, C. G.; Studer, A. Angew. Chem., nt. Ed. 2021, 60, 14399.
[59]
Guo, L.; Yuan, M.; Zhang, Y.; Wang, F.; Zhu, S.; Gutierrez, O.; Chu, L. J. Am. Chem. Soc. 2020, 142, 20390.
[60]
Fan, P.; Lan, Y.; Zhang, C.; Wang, C. J. Am. Chem. Soc. 2020, 142, 2180.
[61]
Jordan, V. C. J. Med. Chem. 2003, 46, 1081.
[62]
Chinchilla, R.; Nájera, C. Chem. Rev. 2014, 114, 1783.
[63]
Jackson, E. P.; Malik, H. A.; Sormunen, G. J.; Baxter, R. D.; Liu, P.; Wang, H.; Shareef, A.-R.; Montgomery, J. Acc. Chem. Res. 2015, 48, 1736.
[64]
Wille, U. Chem. Rev. 2013, 113, 813.
[65]
Xu, T.; Hu, X. Angew. Chem., nt. Ed. 2015, 54, 1307.
[66]
Guo, L.; Song, F.; Zhu, S.; Li, H.; Chu, L. Nat. Commun. 2018, 9, 4543.
[67]
Li, H.; Guo, L.; Feng, X.; Huo, L.; Zhu, S.; Chu, L. Chem. Sci. 2020, 11, 4904.
[68]
Zhu, C.; Yue, H.; Maity, B.; Atodiresei, I.; Cavallo, L.; Rueping, M. Nat. Catal. 2019, 2, 678.
[69]
Yue, H.; Zhu, C.; Kancherla, R.; Liu, F.; Rueping, M. Angew. Chem., nt. Ed. 2020, 59, 5738.
[70]
Zhang, Y.; Tanabe, Y.; Kuriyama, S.; Nishibayashi, Y. J. Org. Chem. 2021, 86, 12577.
[71]
Xu, L.; Zhu, S.; Huo, L.; Chen, F.; Yu, W.; Chu, L. Org. Chem. Front. 2021, 8, 2924.
文章导航

/