综述与进展

烷基、芳基和氟烷基硒化反应的研究进展

  • 李珊 ,
  • 曹原 ,
  • 蒋绿齐
展开
  • a 南京理工大学化工学院 南京 210094
    b 沙洲职业工学院 江苏张家港 215600
共同第一作者
* Corresponding author. E-mail:

收稿日期: 2021-08-02

  修回日期: 2021-09-23

  网络出版日期: 2021-10-15

基金资助

国家自然科学基金(21776138); 国家自然科学基金(22078161); 国家自然科学基金(22108124); 中央高校基本科研业务费专项资金(30918011314); 江苏省自然科学基金(BK20141394); 江苏省青蓝计划和六大高峰人才(22108124)

Recent Progress on Alkyl-, Aryl- and Fluoroalkyl-selenylation Reactions

  • Shan Li ,
  • Yuan Cao ,
  • Lüqi Jiang
Expand
  • a Chemical Engineering College, Nanjing University of Science and Technology, Nanjing 210094
    b Shazhou Professional Institute of Technology, Zhangjiagang, Jiangsu 215600
These authors contributed equally to this work.

Received date: 2021-08-02

  Revised date: 2021-09-23

  Online published: 2021-10-15

Supported by

National Natural Science Foundation of China(21776138); National Natural Science Foundation of China(22078161); National Natural Science Foundation of China(22108124); Fundamental Research Funds for the Central Universities(30918011314); Natural Science Foundation of Jiangsu Province(BK20141394); Qing Lan and Six Talent Peaks in Jiangsu Province(22108124)

摘要

有机硒化物在医药、农药、合成以及材料领域均有着十分重要的应用价值, 在抗癌、抗炎等方面有着尤为突出的作用, 因此有机含硒化合物的合成研究显得尤为重要. 有机硒化物的传统制备方法是通过硒酚或二硒醚(RSeSeR)等含硒底物与烷基或芳基化试剂反应, 近年来, 研究人员也开发了一些新型的直接烷基或芳基硒化试剂. 另一方面, 氟烷硒基化反应的研究相对较少. 开发新的烷基、芳基和氟烷基硒化反应以及新型硒化试剂具有重要研究潜力和价值. 因此主要综述了烷基、芳基和氟烷基硒化反应的最新研究进展, 并对部分反应的机理进行了论述.

本文引用格式

李珊 , 曹原 , 蒋绿齐 . 烷基、芳基和氟烷基硒化反应的研究进展[J]. 有机化学, 2022 , 42(2) : 434 -457 . DOI: 10.6023/cjoc202108001

Abstract

Organoselenium compounds have great application value in the fields of medicine, pesticide, synthesis and materials, and play a particularly prominent role in anti-cancer and anti-inflammatory. Therefore, the synthesis of organoselenium compounds is particularly important in organic synthesis. The traditional methods of synthesizing organoselenium compounds were using selenol or selenium ether react with alkylation or arylation reagents. Various direct alkyl- and aryl-selenylation reagents were also developed in recent years. Moreover, there are few studies on fluoroalkylselenylation. Thus, it is still highly desirable to develop new methods for alkyl-, aryl- and fluoro-alkylselenylation as well as new types of corresponding selenylation reagents. The recent development of alkyl-, aryl- and fluoro-alkylselenylation is summarized, and part of their mechanisms are also discussed.

参考文献

[1]
Shen, L. Q. Chem. World 2009, 50, 511. (in Chinese)
[1]
( 申兰芹, 化学世界, 2009, 50, 511.)
[2]
Chen, H. Z. Internal Medicine, People’s Medical Publishing House Co., Ltd, Peking, 1989, pp. 299-300. (in Chinese)
[2]
( 陈灏珠, 内科学, 人民卫生出版社, 北京, 1989, pp. 299-300.)
[3]
Chen, X. Q.; Jin, Y. Y.; Tang, G. New Pharmacology, People’s Medical Publishing House Co., Ltd, Peking, 2005, p. 776. (in Chinese)
[3]
( 陈新谦, 金有豫, 汤光, 新编药物学, 人民卫生出版社, 北京, 2005, p. 776.)
[4]
Kryukov, G. V.; Castellano, S.; Novoselov, S. V.; Lobanov, A. V.; Zehtab, O.; Guigó, R.; Gladyshev, V. N. Science 2003, 300, 1439.
[5]
Allmang, C.; Wurth, L. Biochim. Biophys. Acta 2009, 1790, 1415.
[6]
Schewe, C.; Schewe, T.; Wendel, A. Biochem. Pharmacol. 1994, 48, 65.
[7]
Tiano, L.; Fedeli, D.; Santoni, G.; Davies, I.; Wakabayashi, T.; Falcioni, G. Mitochondrion 2003, 2, 428.
[8]
Rossato, J. I.; Zen, G.; Mello, C. F.; Rubin, M. A.; Rocha, J. B. Neurosci. Lett. 2002, 318, 137.
[9]
Meotti, F. C.; Stangherlin, E. C.; Zeni, G.; Nogueira, C. W.; Rocha, J. B. Environ. Res. 2004, 94, 276.
[10]
Rossato, J. I.; Ketzer, L. A.; Centuriao, F. B.; Silva, S. J.; Ludtke, D. S.; Zeni, G.; Braga, A. L.; Rubin, M. A.; Rocha, J. B. Neurochem. Res. 2002, 27, 297.
[11]
Nogueira, C. W.; Zeni, G.; Rocha, J. B. Chem. Rev. 2004, 104, 6255.
[12]
Zhang, S.; An, B. J.; Li, J. Y.; Hu, J. H.; Huang, L.; Li, X. S.; Chan, S. C. Org. Biomol. Chem. 2017, 15, 7404.
[13]
Ip, C.; Ganther, H. E. Carcinogenesis 1992, 13, 1167.
[14]
Zeng, H.; Cheng, W. H.; Johnson, L. K. J. Nutr. Biochem. 2013, 24, 776.
[15]
Lin, T.; Ding, Z.; Li, N.; Xu, J.; Luo, G.; Liu, J.; Shen, J. Eur. J. Cancer 2011, 47, 1890.
[16]
Ganther, H. E.; Ip, C. J. Nutr. 2001, 131, 301.
[17]
Wendel, A.; Tiegs, G. Biochem. Pharmacol. 1986, 35, 2115.
[18]
Tabuchi, Y.; Kurebayashi, Y. Jpn. J. Pharmacol. 1993, 61, 255.
[19]
Beil, W.; Staar, U.; Sewing, K. F. Biochem. Pharmacol. 1990, 40, 1997.
[20]
Yamaguchi, T.; Sano, K.; Takakura, K.; Saito, I.; Shinohara, Y.; Asano, T.; Yasuhara, H. Stroke 1998, 29, 12.
[21]
Sohn, O. S.; Blackwell, L.; Mathis, J.; Asaad, W. W.; Reddy, B. S.; El-Bayoumy, K. Drug Metab. Dispos. 1991, 19, 865.
[22]
Guan, Q.; Han, C. M.; Zuo, D. Y.; Zhai, M. A.; Li, Z. Q.; Zhang, Q.; Zhai, Y. P.; Jiang, X. W.; Bao, K.; Wu, Y. L.; Zhang, W. G. Eur. J. Med. Chem. 2014, 87, 306.
[23]
Wen, Z.; Xu, J.; Wang, Z.; Qi, H.; Bai, Z.; Zhang, Q.; Bao, K.; Wu, Y.; Zhang, W. Eur. J. Med. Chem. 2015, 90, 184.
[24]
Ali, H.; van Lier, J. E. J. Chem. Soc., Perkin Trans. 1 1991, 269.
[25]
Engman, L.; Stern, D.; Frisell, H.; Vessman, K.; Berglund, M.; Ek, B.; Andersson, C. M. Bioorg. Med. Chem. 1995, 3, 1255.
[26]
Casaril, A. M.; Ignasiak, M. T.; Chuang, C. Y.; Vieira, B.; Padilha, N. B.; Carroll, L.; Lenardao, E. J.; Savegnago, L.; Davies, M. J. Free Radicals Biol. Med. 2017, 113, 395.
[27]
Kumar, S.; Sharma, N.; Maurya, I. K.; Bhasin, A. K. K.; Wangoo, N.; Brandao, P.; Fleix, V.; Bhasin, K. K.; Kumar, R. K. Eur. J. Med. Chem. 2016, 123, 916.
[28]
Nakatsubo, N.; Kojima, H.; Sakurai, K. Biol. Pharm. Bull. 1998, 21, 1247.
[29]
Yan, J.; Pang, Y. Q.; Zhuang, J. L.; Lin, H. B.; Zhang, X.; Han, L. Q.; Ke, P. F.; Zhuang, J. H.; Huang, X. Z. ACS Chem. Neurosci. 2019, 10, 2903.
[30]
He, X. R.; Yang, R. CN 110041342, 2019.
[31]
Zhang, P.; Lu, L.; Shen, Q. Acta Chim. Sinica 2017, 75, 744. (in Chinese)
[31]
( 张盼盼, 吕龙, 沈其龙, 化学学报, 2017, 75, 744.)
[32]
Zhang, K.; Xu, X.-H.; Qing, F.-L. Chin. J. Org. Chem. 2015, 35, 556. (in Chinese)
[32]
( 张柯, 徐修华, 卿凤翎, 有机化学, 2015, 35, 556.)
[33]
Rossi, A. R.; Pefibfiory. A. B. J. Org. Chem. 1981, 46, 4580.
[34]
Gladysz, J. A.; Hornby, J. L.; Garbe, J. E. J. Org. Chem. 1978, 43, 1204.
[35]
Hartke, K.; Wendebourg, H. H. Heterocycles 1988, 27, 639.
[36]
Barton, D. H. R.; Finet, J.; Thmas, M. Tetrahedron 1988, 44, 6397.
[37]
Iwasaki, M.; Tsuchiya, Y.; Nakajima, K.; Nishihara, Y. Org. Lett. 2014, 16, 4920.
[38]
Ferreira, N. L.; Azeredo, J. B.; Fiorentin, B. L.; Braga, A. L. Eur. J. Org. Chem. 2015, 2015, 5070.
[39]
Santos, K. S.; Sandagorda, E. M. A.; Cargnelutti, R.; Barcellos, T.; Jacob, R. G.; Alves, D.; Schumacher, R. F. ChemistrySelect 2017, 2, 10793.
[40]
Wang, J.; Li, H.; Leng, T.; Liu, M.; Ding, J.; Huang, X.; Wu, H.; Gao W.; Wu. G. Org. Biomol. Chem. 2017, 15, 9718
[41]
Yu, J. M.; Cai, C. Org. Biomol. Chem. 2018, 16, 490.
[42]
Saba, S.; Rafique, J.; Franco, M. S.; Schneider, A. R.; Espíndola, L.; Silva, D. O.; Braga, A. Org. Biomol. Chem. 2018, 16, 880.
[43]
Liu, M. X.; Li, Y. M.; Yu, L.; Xu, Q.; Jiang, X. F. Sci. China Chem. 2018, 61, 294.
[44]
Wang, X.; Li, N.; Wang, H.; Liu, W.; Diao, H.; Xu, X. Chin. J. Org. Chem. 2019, 39, 1802. (in Chinese)
[44]
( 王灵晓, 李宁波, 王浩江, 刘文, 刁海鹏, 许新华, 有机化学, 2019, 39, 1802.)
[45]
Wang, L. X.; Qiao, J.; Wei, J. C.; Liang, Z. W.; Xu, X. H.; Li, N. B. Tetrahedron 2020, 76, 130750.
[46]
Yi, R.; Liu, S.; Gao, H.; Liang, Z. Xu, X.; Li, N. Tetrahedron 2020, 76, 130951.
[47]
Li, N.; Xu, L.; Ma, R.; Fan, Q.; Li, B.; Qiao, J.; Guo, R.; Xu, X. Chin. J. Org. Chem. 2021, 41, 2723. (in Chinese)
[47]
( 李宁波, 续立, 马榕, 范琪, 李波, 乔洁, 郭睿, 许新华, 有机化学, 2021, 41, 2723.)
[48]
Chen, J.; Wu, H.; Gui, Q.; Yan, S.; Deng, J.; Lin, Y.; Cao, Z.; He, W. Chin. J. Catal. 2021, 42, 1445.
[49]
Chen, J.; Zhong, C.; Gui, Q.; Zhou, Y.; Fang, Y.; Liu, K.; Lin, Y.; Cao, Z.; He W. Chin. Chem. Lett. 2021, 32, 475.
[50]
Wu, Y.; Chen, J.; Ning, J.; Jiang, X.; Deng, J.; Deng, Y.; Xu, R.; He W. Green Chem. 2021, 23, 3950.
[51]
Min, L; Wu, G.; Liu, M.; Gao, W.; Ding, J.; Chen, J.; Huang. X.; Wu, H. J. Org. Chem. 2016, 81, 7584.
[52]
Luo, D.; Wu, G.; Yang, H.; Liu, M.; Gao, W.; Huang, X.; Chen, J.; Wu, H. J. Org. Chem. 2016, 81, 4485.
[53]
Gao, C.; Wu, G.; Min, L.; Liu, M.; Gao, W.; Ding, J.; Chen, J.; Huang, X.; Wu, H. J. Org. Chem. 2017, 82, 250.
[54]
Zhu, J.; Zhu, W.; Xie, P.; Jr Pittman, C. U.; Zhou, A. Tetrahedron 2018, 74, 6569.
[55]
Guo, T.; Wei, X. N.; Zhu, Y. L.; Chen, H.; Han, S. L.; Ma, Y. C. Synlett 2018, 29, 1530.
[56]
Guo, T.; Wei, X. N.; Liu, Y.; Zhang, P. K.; Zhao, Y. H. Org. Chem. Front. 2019, 6, 1414.
[57]
Jin, G. Q.; Gao, W. X.; Zhou, Y. B.; Liu, M. C.; Wu, H. Y. RSC Adv. 2020, 10, 30439.
[58]
Li, Y.; Wang, Y.; Yang, T.; Lin, Z.; Jiang, X. Green Chem. 2021, 23, 2986.
[59]
Zimmermann, E. G.; Thurow, S.; Freitas, C. S.; Mendes, S. R.; Perin, G.; Alves, D.; Jacob, R. G.; Lenardão, E. J. Molecules 2013, 18, 4081.
[60]
Wang, J.; Li, H.; Mei, Y. J.; Lou, B.; Xu, D. G.; Xie, D. Q.; Guo, H.; Wang, W. J. Org. Chem. 2005, 70, 5678.
[61]
Tingoli, M.; Diana, R.; Panunzi, B. Tetrahedron Lett. 2006, 47, 7529.
[62]
Denmark, S. E.; Collins, W. R. Org. Lett. 2007, 9, 3801.
[63]
Zhang, H.; Lin, S.; Jacobsen, E. N. J. Am. Chem. Soc. 2014, 136, 16485.
[64]
See, J. Y.; Yang, H.; Zhao, Y.; Wong, M. W.; Ke, Z. H.; Yeung, Y. Y. ACS Catal. 2018, 8, 850.
[65]
Movassagh, B.; Takallou, A. Synlett 2015, 2247.
[66]
Liu, F. M.; Yi, W. B. Org. Chem. Front. 2018, 5, 428.
[67]
Cao, Y.; Liu, J.; Jiang, L. Q.; Yi, W. B. Org. Chem. Front. 2019, 6, 825.
[68]
Mehta, V. P.; Greaney, M. F. Org. Lett. 2013, 15, 5036.
[69]
Heine, N. B.; Studer, A. Org. Lett. 2017, 19, 4150.
[70]
Suzuki, H.; Yoshinaga, M.; Takaoka, K.; Hiroi, Y. Synthesis 1985, 497.
[71]
Blond, G.; Billard, T.; Langlois, B. R. Tetrahedron Lett. 2001, 42, 2473.
[72]
Pooput, C.; Jr. Dolbier, W. R.; Médebielle, M. J. Org. Chem. 2006, 71, 3564.
[73]
Lin, Y. M.; Yi, W. B.; Shen, W. Z.; Lu, G. P. Org. Lett. 2016, 18, 592.
[74]
Carbonnel, E.; Besset, T.; Poisson, T.; Labar, D.; Pannecoucke, X.; Jubault, P. Chem. Commun. 2017, 53, 5706.
[75]
Nozawa-Kumada, K.; Osawa, S.; Ojima, T.; Noguchi, K.; Shigeno, M.; Kondo, Y. Asian J. Org. Chem. 2020, 9, 765.
[76]
Chen, C.; Ouyang, L.; Lin, Q.; Liu, Y.; Hou, C.; Yuan, Y.; Weng, Z. Chem. Eur. J. 2014, 20, 657.
[77]
Wang, J.; Zhang, M.; Weng, Z. J. Fluorine Chem. 2017, 193, 24.
[78]
Yang, Y.; Lin, X.; Zheng, Z.; Lin, G.; Zhang, Y.; You, Y.; Weng, Z. J. Fluorine Chem. 2017, 204, 1.
[79]
Tian, Q.; Weng, Z. Chin. J. Chem. 2016, 34, 505.
[80]
Rong, M.; Huang, R.; You, Y.; Weng, Z. Tetrahedron 2014, 70, 8872.
[81]
Wang, Y.; You, Y.; Weng, Z. Org. Chem. Front. 2015, 2, 574.
[82]
Hou, C.; Lin, X.; Huang, Y.; Chen, Z.; Weng, Z. Synthesis 2015, 47, 969.
[83]
Zhang, Y.; Yang, D.; Weng, Z. Tetrahedron 2017, 73, 3853.
[84]
Chen, T.; You, Y.; Weng, Z. J. Fluorine Chem. 2018, 216, 43.
[85]
Zhang, M.; Weng, Z. Org. Lett. 2019, 21, 5838
[86]
Chen, C.; Hou, C.; Wang, Y.; Andy Hor, T. S.; Weng, Z. Org. Lett. 2014, 16, 524.
[87]
Dong, J.; Li, Z.; Weng, Z. Org. Biomol. Chem. 2018, 16, 9269.
[88]
Geri, J. B.; Wade Wolfe, M. M.; Szymczak, N. K. Angew. Chem., Int. Ed. 2018, 57, 1381.
[89]
Chen, X. L.; Zhou, S. H.; Lin, J. H.; Deng, Q. H; Xiao, J. C. Chem. Commun. 2019, 55, 1410.
[90]
Glenadel, Q.; Ismalaj, E.; Billard, T. J. Org. Chem. 2016, 81, 8268.
[91]
Ghiazza, C.; Billard, T.; Tlili, A. Chem. Eur. J. 2017, 23, 10013.
[92]
Aufiero, M.; Sperger, T.; Tsang, A. S. K.; Schoenebeck, F. Angew. Chem., Int. Ed. 2015, 54, 10322.
[93]
Dürr, A. B.; Fisher, H. C.; Kalvet, I.; Truong, K. N.; Schoenebeck, F. Angew. Chem., Int. Ed. 2017, 56, 13431.
[94]
Lefebvre, Q.; Pluta, R.; Rueping, M. Chem. Commun. 2015, 51, 4394.
[95]
Han, J. B.; Dong, T.; Vicic, D. A.; Zhang, C. P. Org. Lett. 2017, 19, 3919.
[96]
Han, Q. Y.; Zhao, C. L.; Dong, T.; Shi, J.; Tana, K. L.; Zhang, C. P. Org. Chem. Front. 2019, 6, 2732.
[97]
Han, Q. Y.; Tan, K. L.; Wang, H. N.; Zhang, C. P. Org. Lett. 2019, 21, 10013.
[98]
Modak, A.; Pinter, E. N.; Cook, S. P. J. Am. Chem. Soc. 2019, 141, 18405.
[99]
Glenadel, Q.; Ghiazza, C.; Tlili, A.; Billard, T. Adv. Synth. Catal. 2017, 359, 3414.
[100]
Zhao, X.; Wei, X.; Tian, M.; Zheng, X.; Ji, L.; Li, Q.; Lin, Y.; Lu, K. Tetrahedron Lett. 2019, 60, 1796.
[101]
Lu, K.; Li, Q.; Xi, X.; Zhou, T.; Zhao, X. J. Org. Chem. 2020, 85, 1224.
[102]
Dix, S.; Jakob, M.; Hopkinson, M. N. Chem. Eur. J. 2019, 25, 7635.
文章导航

/