综述与进展

硅亲电试剂参与碳硅交叉偶联反应研究进展

  • 从思琪 ,
  • 刘梦亚 ,
  • 彭思远 ,
  • 郑秋翠 ,
  • 李梦娇 ,
  • 郭艳 ,
  • 罗斐贤
展开
  • a 中央民族大学民族地区生态环境国家民委重点实验室 北京 100081
    b 中央民族大学生命与环境科学学院 北京 100081
    c 首都师范大学化学系 北京 100048
    d 中央民族大学生物成像与系统生物学中心 北京 100081
共同第一作者
* Corresponding author. E-mail:

收稿日期: 2021-08-23

  修回日期: 2021-09-16

  网络出版日期: 2021-10-21

基金资助

北京市自然科学基金(2204091); 国家自然科学基金(21901263)

Cross-Coupling of C—Si Bond by Using of Silyl Electrophiles

  • Siqi Cong ,
  • Mengya Liu ,
  • Siyuan Peng ,
  • Qiucui Zheng ,
  • Mengjiao Li ,
  • Yan Guo ,
  • Feixian Luo
Expand
  • a Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081
    b College of Life and Environment Science, Minzu University of China, Beijing 100081
    c Department of Chemistry, Capital Normal University, Beijing 100048
    d Center for Bioimaging & System Biology, Minzu University of China, Beijing 100081
These authors contributed equally to this work.

Received date: 2021-08-23

  Revised date: 2021-09-16

  Online published: 2021-10-21

Supported by

Beijing Natural Science Foundation(2204091); National Natural Science Foundation of China(21901263)

摘要

有机硅化合物因其特殊的性质而广泛应用于合成化学、材料、药物和农药化学等领域. 有机硅化合物通常由亲核取代、烯烃硅氢化和碳氢键直接硅化等方法制备. 近年来, 通过交叉偶联构建碳硅键合成有机硅烷取得突破性进展, 引起合成化学领域研究者的广泛关注和兴趣, 成为有机硅化合物合成研究热点. 主要从硅亲电试剂参与的Heck反应、Negishi反应、Kumada反应、最新突破的还原交叉偶联反应以及多组分偶联反应和自由基硅化反应, 总结了近些年来廉价易得的有机硅亲电试剂参与交叉偶联合成有机硅烷研究进展. 同时介绍了芳基硅脱甲基分子内交叉偶联反应相关研究进展.

本文引用格式

从思琪 , 刘梦亚 , 彭思远 , 郑秋翠 , 李梦娇 , 郭艳 , 罗斐贤 . 硅亲电试剂参与碳硅交叉偶联反应研究进展[J]. 有机化学, 2022 , 42(2) : 384 -390 . DOI: 10.6023/cjoc202108045

Abstract

Organosilanes have been widely applied in synthetic chemistry, materials, pharmaceuticals, agrochemicals due to the special properties. The synthesis of organosilanes has been successfully developed by several strategies including nucleophilic substitution, hydrosilylation of alkene and C—H silylation. In recent years, significant achievements have been advanced in the cross-coupling of C—Si bond by using of silyl electrophiles, especially in the break-through of the reductive cross-coupling of silyl electrophiles and carbon electrophiles. It is emerging as one of the hottest issues in synthetic chemistry. In the review, the recent progress on the cross-coupling for C—Si bond formation by using of silyl electrophiles is summarized. The reaction type including silyl-Heck, silyl-Negishi, silyl-Kumada, silyl-reductive-electrophile-coupling, multicomponent coupling reaction and radical silylation was mainly discussed. In the meanwhile, the intramolecular C—Si coupling via demethylation of aryl silanes is also discussed.

参考文献

[1]
Brook, M. A. Silicon in Organic, Organometallic, and Polymer Chemistry, Wiley, New York, 2000, Chapter 5.
[2]
(a) Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Chirik, P. J. Science 2012, 335, 567.
[2]
(b) Peng, D.; Zhang, Y.; Du, X.; Zhang, L.; Leng, X., Walter, M. D.; Huang, Z. J. Am. Chem. Soc. 2013, 135, 19154.
[2]
(c) Buslov, I.; Becouse, J.; Mazza, S.; Montandon-Clerc, M.; Hu, X. Angew. Chem., Int. Ed. 2015, 54, 14523.
[2]
(d) Chen, J.; Cheng, B.; Cao, M.; Lu, Z. Angew. Chem., Int. Ed. 2015, 54, 4661.
[2]
(e) Sun, J.; Deng, L. ACS Catal. 2016, 6, 290.
[2]
(f) Cheng, B.; Lu, P.; Zhang, H.; Cheng, X.; Lu, Z. J. Am. Chem. Soc. 2017, 139, 9439.
[2]
(g) Yang, Y.; Song, R.-J.; Li, Y.; Ouyang, X.-H.; Li, J.-H.; He, D.-L. Chem. Commun. 2018, 54, 1441.
[2]
(h) Liu, J.; Chen, W.; Li, J.; Cui, C. ACS Catal. 2018, 8, 2230.
[2]
(i) Huai, G. Z.; Teng, H.-L.; Luo, Y.; Lou, S.-J.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2018, 57, 12342.
[3]
(a) Cheng, C.; Hartwig, J. F. Chem. Rev. 2015, 115, 8946.
[3]
(b) Toutov, A. A.; Liu, W.-B.; Betz, K. N.; Fedorov, A.; Stoltz, B. M.; Grubbs, R. H. Nature 2015, 518, 80.
[3]
(c) Tobisu, M.; Onoe, M.; Yusuke Kita, Y.; Chatani, N. J. Am. Chem. Soc. 2009, 131, 7506.
[3]
(d) Ihara, H.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 7502.
[3]
(e) Onoe, M.; Baba, K.; Kim, Y.; Kita, Y.; Mamoru Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2012, 134, 19477.
[3]
(f) Liang, Y.; Geng, W.; Wei, J.; Xi, Z. Angew. Chem., Int. Ed. 2012, 51, 1934.
[3]
(g) Ghavtadze, N.; Melkonyan, F. S.; Gulevich, A. V.; Huang, C.; Gevorgyan, V. Nat. Chem. 2014, 6. 122.
[3]
(h) Kanyiva, K. S.; Kuninobu, Y.; Kanai, M. Org. Lett. 2014, 16, 1968.
[3]
(i) Liu, Y. J.; Liu, Y. H.; Zhang, Z. Z.; Yan, S. Y.; Chen, K.; Shi, B. F. Angew. Chem., Int. Ed. 2016, 55, 13859.
[3]
(j) Li, W.; Huang, X.; You, J. Org. Lett. 2016, 18, 666.
[3]
(k) Zhao, W.-T.; Lu, Z.-Q.; Zheng, H.; Xue, X.-S.; Zhao, D. ACS Catal. 2018, 8, 7997.
[4]
Database of iBonD 2.0, http://ibond.nankai.edu.cn/bde/#
[5]
(a) Korch, K. M.; Watson, D. A. Chem. Rev. 2019, 119, 8192.
[5]
(b) Bähr, S.; Xue, W.; Oestreich, M. ACS Catal. 2019, 9, 16.
[5]
(c) Murakami, K.; Hirano, K.; Yorimitsu, H.; Oshima, K. Angew. Chem., Int. Ed. 2008, 47, 5833.
[5]
(d) Zhang, Q. W.; An, K.; He, W. Angew. Chem., Int. Ed. 2014, 53, 5667.
[5]
(e) Li, L. W.; Zhang, Y. B.; Gao, L.; Song, Z. L. Tetrahedron Lett. 2015, 56, 1466.
[5]
(f) Zhang, L.; Hang, Z.; Liu, Z.-Q. Angew. Chem., Int. Ed. 2016, 55, 236.
[5]
(g) Xu, Z.; Xu, J. Z.; Zhang, J.; Zheng, Z. J.; Cao, J.; Cui, Y. M.; Xu, L. W. Chem. Asian J. 2017, 12, 1749.
[5]
(h) Li, W.; Xiao, G.; Deng, G.; Liang, Y. Org. Chem. Front. 2018, 5, 1488.
[6]
(a) Duan, J.; Wang, K.; Xu, G.-L.; Kang, S.; Qi, L.; Liu, X.-Y.; Shu, X.-Z. Angew. Chem., nt. Ed. 2020, 59, 23083.
[6]
(b) Zhang, L.; Oestreich, M. Angew. Chem., Int. Ed. 2021, 60, 18587.
[7]
Wang, M.-F.; Yu, M.-D.; Wang, W.-S.; Lin, W.-L.; Luo, F.-X. Chin. J. Org. Chem. 2019, 39, 3145. (in Chinese)
[7]
( 王明凤, 余茂栋, 王文蜀, 林伟立, 罗斐贤, 有机化学, 2019, 39, 3145.)
[8]
Kuyper, J. Inorg. Chem. 1978. 17, 77.
[9]
Yamashita, H.; Hayashi, T.; Kobayashi, T.; Tanaka, M.; Goto M. J. Am. Chem. Soc. 1988, 110, 4417.
[10]
Yamashita, H.; Kobayashi, T.; Hayashi, T.; Tanaka, M. Chem. Lett. 1990, 19, 1447.
[11]
Mitton, S.J.; McDonald, R.; Turculet, L. Organometallics 2009, 28, 5122.
[12]
Yamashita, H.; Kobayashi, T.-A.; Hayashi, T.; Tanaka, M. Chem. Lett. 1991. 20, 761.
[13]
McAtee, J. R.; Martin, S. E.; Ahneman, D. T.; Johnson, K. A.; Watson, D. A. Angew. Chem., Int. Ed. 2012, 51, 3663.
[14]
Watson, D.; Martin, S. Synlett 2013, 24, 2177.
[15]
Martin, S. E.; Watson, D. A. J. Am. Chem. Soc. 2013, 135, 13330.
[16]
McAtee, J. R.; Yap, G. P. A.; Watson, D. A. J. Am. Chem. Soc. 2014, 136, 10166.
[17]
Krause, S. B.; McAtee, J. R.; Yap, G. P. A.; Watson, D. A. Org. Lett. 2017, 19, 5641.
[18]
McAtee, J. R.; Krause, S. B.; Watson, D. A. Adv. Synth. Catal. 2015, 357, 2317.
[19]
McAtee, J. R.; Martin, S. E.; Cinderella, A. P.; Reid, W. B.; Johnson, K. A.; Watson, D. A. Tetrahedron 2014, 70, 4250.
[20]
Matsumoto, K.; Huang, J.; Naganawa, Y.; Guo, H.; Beppu, T.; Sato, K.; Shimada, S.; Nakajima, Y. Org. Lett. 2018, 20, 2481.
[21]
Dong, J.; Yuan, X. A.; Yan, Z.; Mu, L.; Ma, J.; Zhu, C.; Xie, J. Nat. Chem. 2021, 13, 182.
[22]
Cinderella, A. P.; Vulovic, B.; Watson, D. A. J. Am. Chem. Soc. 2017, 139, 7741.
[23]
Vulovic, B.; Cinderella, A. P.; Watson, D. A. ACS Cat. 2017, 7, 8113.
[24]
Chatani, N.; Amishiro, N.; Murai, S. J. Am. Chem. Soc. 1991, 113, 7778.
[25]
Chatani, N.; Amishiro, N.; Morii, T.; Yamashita, T.; Murai, S. J. Org. Chem. 1995, 60, 1834.
[26]
Wisthoff, M. F.; Pawley, S. B.; Cinderella, A. P.; Watson, D. A. J. Am. Chem. Soc. 2020, 142, 12051.
[27]
(a) Shang, X.; Liu, Z. Q. Org. Biomol. Chem. 2016, 14, 7829.
[27]
(b) Li, J.-S.; Wu, J. ChemPhotoChem 2018, 2, 839.
[28]
Lu, L.; Siu, J.; Lai, Y.; Lin, S. J. Am. Chem. Soc. 2020, 142, 21272.
[29]
Liang, Y.; Zhang, S.; Xi, Z. J. Am. Chem. Soc. 2011, 133, 9204.
文章导航

/