综述与进展

光电技术在含硒杂环合成中的应用研究

  • 王薪 ,
  • 张艳 ,
  • 孙凯 ,
  • 孟建萍 ,
  • 张冰
展开
  • a 郑州大学化学工程学院 郑州 450001
    b 烟台大学化学与化学工程学院 山东烟台 264005

收稿日期: 2021-09-29

  修回日期: 2021-10-14

  网络出版日期: 2021-10-21

基金资助

国家自然科学基金(21801007)

Study on the Application of Photoelectric Technology in the Synthesis of Selenium-Containing Heterocycles

  • Xin Wang ,
  • Yan Zhang ,
  • Kai Sun ,
  • Jianping Meng ,
  • Bing Zhang
Expand
  • a School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001
    b School of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005
* Corresponding authors. E-mail: ;

Received date: 2021-09-29

  Revised date: 2021-10-14

  Online published: 2021-10-21

Supported by

National Natural Science Foundation of China(21801007)

摘要

含硒杂环是一类重要的有机分子, 在医药、农用化学品、有机材料等领域有着广泛的应用. 因此, 有机分子中引入硒原子在合成化学中具有重要意义. 可见光和电化学技术是较为绿色、可持续的合成方法之一, 在不饱和键的双官能化、环化以及C—H键的直接官能化等领域开辟了广阔的应用前景. 近年来, 发展新颖的利用光电技术驱动不饱和键的硒环化反应和C—H键的直接硒化反应备受关注. 分别描述了近年快速发展的电化学驱动、可见光诱导含硒杂环的合成反应, 并对部分反应的适用范围和机理进行了讨论.

本文引用格式

王薪 , 张艳 , 孙凯 , 孟建萍 , 张冰 . 光电技术在含硒杂环合成中的应用研究[J]. 有机化学, 2021 , 41(12) : 4588 -4609 . DOI: 10.6023/cjoc202109046

Abstract

Selenium-containing heterocycles are a kind of important organic molecules, which are widely used in medicine, agrochemicals, organic materials and other fields. Therefore, the introduction of selenium atom into organic molecules is of great significance in synthetic chemistry. Visible light and electrochemical technology is one of the green and sustainable synthesis methods, which has opened up broad application prospects in the fields of bifunctionalization and cyclization of unsaturated bonds and direct functionalization of C—H bonds. In recent years, the development of novel selenium cyclization reaction using photoelectric technology to drive unsaturated bonds and direct selenization reaction of C—H bonds has attracted much attention. Therefore, this paper describes the electrochemical-driven and visible-light-induced synthesis reactions of selenium-containing heterocycles, and discusses the applicable scope and mechanism of some reactions.

参考文献

[1]
Walter, R.; Roy, J. J. Org. Chem. 1971, 36, 2561.
[2]
Huang, G.; Zhao, H.-R.; Meng, Q.-Q.; Zhang, Q.-J.; Dong, J.-Y.; Zhu, B.; Li, S.-S. Eur. J. Med. Chem. 2018, 143, 166.
[3]
(a) Zhao, L.; Li, J.; Li, Y.; Liu, J.; Wirth, T.; Li, Z. Bioorg. Med. Chem. 2012, 20, 2558.
[3]
(b) Wen, Z.; Xu, J.; Wang, Z.; Qi, H.; Xu, Q.; Bai, Z.; Zhang, Q.; Bao, K.; Wu, Y.; Zhang, W. Eur. J. Med. Chem. 2015, 90, 184.
[3]
(c) Goodman, L.; Ross, L. O.; Baker, B. R. J. Org. Chem. 1958, 23, 1251.
[3]
(d) Huang, G.; Zhao, H.-R.; Meng, Q.-Q.; Zhang, Q.-J.; Dong, J.-Y.; Zhu, B.; Li, S.-S. Eur. J. Med. Chem. 2018, 143, 166.
[4]
(a) Min, J.; Wang, P.; Srinivasan, S.; Nwachukwu, J. C.; Guo, P.; Huang, M.; Carlson, K. E.; Katzenellenbogen, J. A.; Nettles, K. W.; Zhou, H. B. Eur. J. Med. Chem. 2013, 56, 3346.
[4]
(b) Mao, F.; Chen, J.; Zhou, Q.; Luo, Z., Huang, L.; Li, X. Bioorg. Med. Chem. Lett. 2013, 23, 6737.
[5]
(a) Jadhav, A. A.; Dhanwe, V. P.; Joshi, P. G.; Khanna, P.-K. Chem. Heterocycl. Compd. 2015, 51, 102.
[5]
(b) Kumar, S.; Sharma, N.; Maurya, I. K.; Bhasin, A. K.; Wangoo, N.; Brandão, P.; Félix, V. K.; Bhasin, K.; Sharma, R. K. Eur. J. Med. Chem. 2016, 123, 916.
[5]
(c) Empel, A.; Kisiel, E.; Wojtyczka, R.; Kępa, M.; Idzik, D.; Sochanik, A.; Wąsik, T.; Zięba, A. Molecules 2018, 23, 218.
[6]
(a) Sahu, P. K.; Kim, G.; Yu, J.; Ahn, J. Y.; Song, J.; Choi, Y.; Jin, X.; Kim, J. H.; Lee, S. K.; Park, S.; Jeong, L. S. Org. Lett. 2014, 16, 5796.
[6]
(b) Xiong, L.; Liu, S.; Chen, S.; Xiao, Y.; Zhu, B.; Gao, Y.; Zhang, Y.; Chen, B.; Luo, J.; Deng, Z.; Chen, X.; Wang, L.; Chen, S. Nat. Commun. 2019, 10, 1688.
[6]
(c) Yu, J.; Kim, J. H.; Lee, H. W.; Alexander, V.; Ahn, H. C.; Choi, W. J.; Choi, J.; Jeong, L. S. Chem.-Eur. J. 2013, 19, 5528.
[7]
(a) Sarma, B. K.; Mugesh, G. Chem.-Eur. J. 2008, 14, 10603.
[7]
(b) Nogueira, C. W.; Quinhones, E. B.; Jung, E. A.; Zeni, G.; Rocha, J. B. Inflammation Res. 2003, 52, 56.
[7]
(c) Lee, D. Y.; Li, H.; Lim, H. J.; Lee, H. J.; Jeon, R.; Ryu, J. H. J. Med. Food 2012, 15, 992.
[8]
(a) Nishiguchi, T.; Yoshikawa, Y.; Yasui, H. Int. J. Mol. Sci. 2017, 18, 2647.
[8]
(b) Meltzer-Mats, E.; Babai-Shani, G.; Pasternak, L.; Uritsky, N.; Getter, T.; Viskind, O.; Eckel, J.; Cerasi, E.; Senderowitz, H.; Sasson, S.; Gruzman, A. J. Med. Chem. 2013, 56, 5335.
[9]
(a) Victoria, F. N.; Anversa, R.; Penteado, F.; Castro, M.; Lenardão, E. J.; Savegnago, L. Eur. J. Pharmacol. 2014, 742, 131.
[9]
(b) Donato, F.; De Gomes, M. G.; Goes, A. T.; Seus, N.; Alves, D.; Jesse, C. R.; Savegnago, L. Life Sci. 2013, 93, 393.
[9]
(c) Jin, Q.; Fu, Z.; Guan, L.; Jiang, H. Mar. Drugs 2019, 17, 430.
[9]
(d) Goto, K.; Nagahama, M.; Mizushim, T.; Shimada, K.; Kawashima, T.; Okazaki, R. Org. Lett. 2001, 3, 3569.
[10]
(a) Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T. Angew. Chem., Int. Ed. 2009, 48, 8409.
[10]
(b) Modha, S. G.; Mehta, V. P.; Van der Eycken, E. V. Chem. Soc. Rev. 2013, 42, 5042.
[10]
(c) Mahmudov, K. T.; Kopylovich, M. N.; Guedes da Silva, M. F.; Pombeiro, A.-J. Dalton Trans. 2017, 46, 10121.
[10]
(d) Brutchey, R. L. Acc. Chem. Res. 2015, 48, 2918.
[11]
(a) Albert, E. E.; Do nascimento, V.; Braga, A. L. J. Am. Chem. Soc. 2010, 21, 2032.
[11]
(b) Xu, L.; Wang, F.; Chen, F.; Zhu, S.-Q.; Chu, L.-L. 2022, 42, DOI: 10.6023/cjoc202109002. (in Chinese)
[11]
( 徐磊, 王方, 陈凡, 朱圣卿, 储玲玲, 有机化学, 2022, 42, DOI: 10.6023/cjoc202109002.)
[12]
(a) Pan, C.; Liu, P.; Wu, A.-G.; Li, M.; Wen, L.-R.; Guo, W.-S. Chin. J. Org. Chem. 2020, 40, 2855. (in Chinese)
[12]
( 潘超, 刘鹏, 武安国, 李明, 文丽荣, 郭维斯, 有机化学, 2020, 40, 2855.)
[12]
(b) Mukherjee, A. J.; Zade, S. S.; Singh, H. B.; Sunoj, R. B. Chem. Rev. 2010, 110, 4357.
[12]
(c) Nogueira, C. W.; Zeni, G.; Rocha, J.-B. Chem. Rev. 2004, 104, 6255.
[13]
Meng, X.-J.; Zhong, P.-F.; Wang, Y.-M.; Wang, H.-S.; Tang, H.-T.; Pan, Y.-M. Adv. Synth. Catal. 2020, 362, 506.
[14]
Mallick, S.; Baidya, M.; Mahanty, K.; Maiti, D.; Sarkara, S. D. Adv. Synth. Catal. 2020, 362, 1046.
[15]
Hua, J.-W.; Fang, Z.; Xu, Jia.; Bian, M.-X.; Liu, C.-K.; He, W.; Zhu, N.; Yang, Z.; Guo, K. Green Chem. 2019, 21, 4706.
[16]
(a) Dakova, B.; Lamberts, L.; Evers, M. Electrochim. Acta 1994, 39, 2363.
[16]
(b) Kunai, A.; Harada, J.; Izumi, J.; Tachihara, H.; Sasaki, K. Electrochim. Acta 1983, 28, 1361.
[16]
(c) Torii, S.; Uneyama, K.; Ono, M.; Bannou, T. J. Am. Chem. Soc. 1981, 103, 4606.
[17]
Guan, Z.-P.; Wang, Y.-K; Wang, H.-M.; Huang, Y.-G.; Wang, S.-Y.; Tang, H.-D.; Zhang, H.; Lei, A.-W. Green Chem. 2019, 21, 4976.
[18]
Wang, X.-Y.; Zhong, Y.; Mo, Z.-Y.; Wu, S.-H.; Xu, Y.-L.; Tang, H.-T.; Pan, Y.-M. Adv. Synth. Catal. 2021, 363, 208.
[19]
Hua, J.-W.; Fang, Z.; Bian, M.-X.; Ma, T.; Yang, M.; Xu, J.; Liu, C.-K.; He, W.; Zhu, N.; Yang, Z.; Guo, K. ChemSusChem 2020, 13, 2053.
[20]
(a) Torii, S.; Uneyama, K.; Ono, M.; Bannou, T. J. Am. Chem. Soc. 1981, 103, 4606.
[20]
(b) Dakova, B.; Lamberts, L.; Evers, M. Electrochim. Acta 1994, 39, 2363.
[20]
(c) Sun, K.; Wang, X.; Fu, F.; Zhang, C.; Chen, Y.; Liu, L. Green Chem. 2017, 19, 1490.
[20]
(d) Kim, Y. J.; Kim, D. Y. Org. Lett. 2019, 21, 1021.
[20]
(e) Yang, X.-H.; Yang, X.-H.; Wei, W.-T.; Song, R.-J.; Li, J.-H. Adv. Synth. Catal. 2015, 357, 1161.
[20]
(f) Reddy, C. R.; Yarlagadda, S.; Ramesh, B.; Reddy, M. R.; Sridhar, B.; Reddy, B. V. Eur. J. Org. Chem. 2017, 2017, 2332.
[21]
Scheide, M. R.; Schneider, A. R.; Jardim, G. A. Martins, G. M.; Durigon, D. C.; Saba, S.; Rafiqueb, J.; Braga, A. L. Org. Biomol. Chem. 2020, 18, 4916.
[22]
Kharma, A.; Jacob, C.; Bozzi, A. O.; Jardim, G. M.; Braga, A. L.; Salomão, K.; Gatto, C. C.; Silva, M. F.; Pessoa, C.; Stangier, M.; Ackermann, L.; Júnior, E. N. Eur. J. Org. Chem. 2020, 4474.
[23]
Bian, M.-X.; Hua, J.-W.; Ma, T.; Xu, J.; Cai, C.; Yang, Z.; Liu, C.-K.; He, W.; Fang, Z.; Guo, K. Org. Biomol. Chem. 2021, 19, 3207.
[24]
Yu, K.; Kong, X.-Q.; Yang, J.-J.; Li, G. D.; Xu, B.; Chen, Q.-J. J. Org. Chem. 2021, 86, 917.
[25]
Wang, Q.; Ma, X.-L.; Chen, Y.-Y.; Jiang, C.-N.; Xu, Y.-L. Eur. J. Org. Chem. 2020, 2020, 4384.
[26]
Chen, J.-Y.; Zhong, C.-T.; Gui, Q.-W.; Zhou, Y.-M.; Fang, Y.-Y.; Liu, K.-J.; Lin, Y.-W.; Cao, Z.; He, W.-M. Chin. Chem. Lett. 2021, 32, 475.
[27]
Cui, T.; Zhang, X.-F.; Lin, J.; Zhu, Z.-T.; Liu, P.; Sun, P.-P. Synlett 2020, 267.
[28]
Liu, X.; Wang, Y.-J.; Song, D.; Wang, Y.-H.; Cao, H. Chem. Commun. 2020, 56, 15325.
[29]
Tan, H.; Li, H.; Ji, W.; Wang, L. Angew. Chem., Int. Ed. 2015, 54, 8374.
[30]
(a) Nicewicz, D. A.; MacMillan, D. W. Science 2008, 322, 77.
[30]
(b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. Chem. Rev. 2013, 113, 5322.
[30]
(c) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527.
[30]
(d) Chen, J.-Y.; Zhong, C.-T.; Gui, Q.-W.; Zhou, Y.-M.; Fang, Y.-Y.; Liu, K.-J.; Lin, Y.-W.; Cao, Z.; He, W.-M. Chin. Chem. Lett. 2021, 32, 01.
[31]
(a) Yang, W.; Yang, S.; Li, P.; Wang, L. Chem. Commun. 2015, 51, 7520.
[31]
(b) Chen, Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Sci. China Chem. 2019, 62, 24.
[31]
(c) Liu, Y.; Lin, L.; Han, Y.; Liu, Y. Chin. J. Org. Chem. 2020, 40, 4216. (in Chinese)
[31]
( 刘洋, 林立青, 韩莹徽, 刘颖杰, 有机化学, 2020, 40, 4216.)
[31]
(d) Yang, W.; Zhang, M.; Chen, W.; Yang, X.; Feng, J. Chin. J. Org. Chem. 2020, 40, 4060. (in Chinese)
[31]
( 杨文超, 张明明, 陈旺, 杨小虎, 冯建国, 有机化学, 2020, 40, 4060.)
[31]
(e) He, S.-Q.; Li, H.-C.; Chen, X.-L.; Krylov, I. B.; Terentev, A. O.; Qu, L.-B.; Yu, B. Chin. J. Org. Chem. 2021, 41, 4661. (in Chinese)
[31]
( 贺帅旗, 李昊聪, 陈晓岚, Igor B. Krylov, Alexander O. Terentev, 屈凌波, 於兵, 有机化学, 2021, 41, 4661.)
[31]
(f) Yang, W.-C.; Zhang, M.-M.; Sun, Y.; Chen, C.-Y.; Wang, L. Org. Lett. 2021, 23, 6691.
[32]
Mitamura, T.; Iwata, K.; Nomoto, A.; Ogawa, A. Org. Biomol. Chem. 2011, 9, 3768.
[33]
Conner, E. S.; Crocker, K. E.; Fernando, R. G.; Fronczek, F. R.; Stanley, G. G.; Ragains, J. R. Org. Lett. 2013, 15, 5558.
[34]
Sahoo, H.; Mandal, A.; Dana, S.; Baidya, M. Adv. Synth. Catal. 2018, 360, 1099.
[35]
(a) Jin, D.-P.; Gao, P.; Chen, D.-Q.; Chen, S.; Wang, J.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2016, 18, 3486.
[35]
(b) Wen, J.-W.; Wei, W.; Xue, S.-N.; Yang, D.-S.; Lou, Y.; Gao, C.-Y.; Wang, H. J. Org. Chem. 2015, 80, 4966.
[35]
(c) Kobiki, Y.; Kawaguchi, S.; Ogawa, A. Tetrahedron Lett. 2013, 54, 5453.
[36]
Wei, W.; Cui, H.; Yang, D.; Yue, H.; He, C.; Zhang, Y.; Wang, H. Green Chem. 2017, 19, 5608.
[37]
Shi, Q.; Li, P.-H.; Zhang, Y.; Wang, L. Org. Chem. Front. 2017, 4, 1322.
[38]
Ma, X.-Li.; Wang, Q.; Feng, X.-Y.; Mo, Z.-Y.; Pan, Y.-M.; Chen, Y.-Y.; Xin, M.; Xu, Y.-L. Green Chem. 2019, 21, 3547.
[39]
(a) Huang, M.-H.; Hao, W.-J.; Li, G.; Tu, S.-J.; Jiang, B. Chem. Commun. 2018, 54, 10791.
[39]
(b) Zhu, S.; Pathigoolla, A.; Lowe, G.; Walsh, D. A.; Cooper, M.; Lewis, W.; Lam, H. W. Chem.-Eur. J. 2017, 23, 17598.
[39]
(c) Kawaguchi, S.; Shirai, T.; Ohe, T.; Nomoto, A.; Sonoda, M.; Ogawa, A. J. Org. Chem. 2009, 74, 1751.
[39]
(d) Kobiki, Y.; Kawaguchi, S.; Ogawa, A. Tetrahedron Lett. 2013, 54, 545.
[40]
Sahoo, S. R.; Das, B.; Sarkar, D.; Henkel, F.; Reuter, H. Eur. J. Org. Chem. 2020, 2020, 891.
[41]
Jung, H. I.; Kim, D. Y. Synlett 2019, 30, 1361.
[42]
Zhang, Q.-B.; Yuan, P.-F.; Kai, L.-L.; Liu, K.; Ban, Y.-L.; Wang, X.-Y.; Wu, L.-Z.; Liu, Q. Org. Lett. 2019, 21, 885.
[43]
(a) Ortgies, S.; Rieger, R.; Rode, K.; Koszinowski, K.; Kind, J.; Thiele, C. M.; Rehbein, J.; Breder, A. Adv. Synth. Catal. 2017, 7, 7578.
[43]
(b) Wilken, M.; Ortgies, S.; Breder, A.; Siewert, I. Adv. Synth. Catal. 2018, 8, 10901.
[43]
(c) Minakata, S.; Morino, Y.; Oderaotoshi, Y.; Komatsu, M. Org. Lett. 2006, 8, 3335.
[43]
(d) Nagaraju, K.; Rajesh, N.; Krishna, P. R. Synth. Commun. 2018, 48, 1001.
[44]
Mutra, M. R.; Kudale, V. S.; Li, J.; Tsaia, W. H.; Wang, J. J. Green Chem. 2020, 22, 2288.
[45]
Ye, Z.-P.; Xia, P.-J.; Liu, F.; Hu, Y.-Z.; Song, D.; Xiao, J.-A.; Huang, P.; Xiang, H.-Y.; Chen, X.-Q.; Yang, H. J. Org. Chem. 2020, 85, 5670.
[46]
Tran, C. C.; Kawaguchi, S.; Sato, F.; Nomoto, A.; Ogawa, A. J. Org. Chem. 2020, 85, 7258.
[47]
Zhou, X.-J.; Liu, H.-Y.; Mo, Z.-Y.; Ma, X.-L.; Chen, Y.-Y.; Tang, H.-T.; Pan, Y.-M.; Xu, Y.-L. Chem. Asian J. 2020, 15, 1536.
[48]
Zhou, J.-L.; Li, W.; Zheng, H.-T.; Pei, Y.-Y.; Liu, X.; Cao, H. Org. Lett. 2021, 23, 2754.
[49]
Hou, H.; Sun, Y.; Pan, Y.-J.; Yu, H.-G.; Han, Y.; Shi, Y.-C.; Yan, C.-G.; Zhu, S.-Q. J. Org. Chem. 2021, 86, 1273.
[50]
Kundu, D.; Ahammed, S.; Ranund, B. C. Org. Lett. 2014, 16, 1814.
[51]
Gandeepan, P.; Mo, J.; Ackermann, L. Chem. Commun. 2017, 53, 5906.
[52]
Zhang, Q.-B.; Ban, Y.-L.; Yuan, P.-F.; Peng, S.-J.; Fang, J.-G.; Wu, L.-Z.; Liu, Q. Green Chem. 2017, 19, 5559.
[53]
Andal, T.; Das, S.; Sarkar, S. D. Adv. Synth. Catal. 2019, 361, 3200.
[54]
Yang, D.-S.; Li, G.-Q.; Xing, C.-Y.; Cui, W.-W.; Li, K.-X.; Wei, W. Org. Chem. Front. 2018, 5, 2974.
[55]
Jin, J.; MacMillan, D. W. Angew. Chem., Int. Ed. 2015, 54, 1565.
[56]
Devari, S.; Shah, B. A. Chem. Commun. 2016, 52, 1490.
[57]
Zhao, Y.-T.; Huang, B.-B.; Yang, C.; Xia, W.-J. Org. Lett. 2016, 18, 3326.
[58]
Ghiazza, C.; Debrauwer, V.; Monnereau, C.; Khrouz, L.; Medebielle, M. D.; Billard, T. D.; Tlili, A. Angew. Chem., Int. Ed. 2018, 57, 11781.
[59]
Kumaraswamy, G.; Ramesh, V.; Gangadhar, M.; Vijaykumar, S. Asian J. Org. Chem. 2018, 7, 1689.
[60]
Saba, S.; Rafifique, J.; Franco, M. S.; Schneider, A. R.; Espíndola, L.; Silva, D. O.; Braga, A. L. Org. Biomol. Chem. 2018, 16, 880.
[61]
Ghiazzaa, C.; Monnereaub, C.; Khrouzb, L.; Médebiellea, M.; Billard, T.; Tlili, A. Synlett 2018, 29, 777.
[62]
Rathore, V.; Kumar, S. Green Chem. 2019, 21, 2670.
[63]
Lemir, I. D.; Castro-Godoy, W. D.; Heredia, A. A.; Schmidt, L. C.; Arguella, J. E. RSC Adv. 2019, 9, 22685.
[64]
Heredia, A. A.; Soria-Castro, S. M.; Castro-Godoy, W. D.; Lemir, I. D.; Lopez-Vidal, M.; Bisogno, F. R.; Argüello, J. E.; Oksdath-Mansilla, G. Org. Process Res. Dev. 2020, 24, 540.
[65]
Liu, J.-J.; Tian, M.-M.; Li, Y.-X.; Shan, X.-W.; Li, A.-K.; Lu, K.; Fagnoni, M.; Protti, S.; Zhao, X. Eur. J. Org. Chem. 2020, 47, 7358.
文章导航

/