综述与进展

可见光诱导重氮化合物产生卡宾及其官能化反应

  • 蔡宝贵 ,
  • 宣俊
展开
  • 安徽大学化学化工学院 无机-有机杂化功能材料化学安徽省重点实验室 合肥 230601

收稿日期: 2021-09-26

  修回日期: 2021-10-20

  网络出版日期: 2021-10-29

基金资助

国家自然科学基金(21971001); 国家自然科学基金(21702001)

Visible Light-Promoted Transformation of Diazo Compounds via the Formation of Free Carbene as Key Intermediate

  • Baogui Cai ,
  • Jun Xuan
Expand
  • Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei 230601
* Corresponding author. E-mail:

Received date: 2021-09-26

  Revised date: 2021-10-20

  Online published: 2021-10-29

Supported by

National Natural Science Foundation of China(21971001); National Natural Science Foundation of China(21702001)

摘要

卡宾是有机合成中的重要中间体. 在过去的几十年中, 过渡金属催化的卡宾转移反应取得了显著发展. 近年来,可见光促进的重氮化合物通过游离态卡宾的转化也开始兴起. 该类反应仅需要使用可见光作为唯一能源, 符合绿色化学理念. 自2018年Davies课题组和周磊课题组分别独立报道了芳基重氮酯在可见光照射下光解生成游离态卡宾物种以来, 光促重氮化合物的转化反应受到了越来越多科研工作者的关注, 也催生了许多绿色高效的有机合成新反应.在前人工作基础上, 进一步完善了该领域的最新进展, 综述了近期可见光照射下重氮化合物的新转化反应和国内学者的贡献, 展望了该领域的未来发展方向和所面临的挑战.

本文引用格式

蔡宝贵 , 宣俊 . 可见光诱导重氮化合物产生卡宾及其官能化反应[J]. 有机化学, 2021 , 41(12) : 4565 -4574 . DOI: 10.6023/cjoc202109040

Abstract

Carbene is one of the most important synthetic intermediates in organic synthesis. In the past few decades, transition-metal catalyzed carbene transfer reactions have made remarkable development. Recently, visible light-promoted transformation of diazo compounds through the formation of free carbene as key intermediate begun to rise. The reaction only need visible light as the sole energy source which meets the concept of green chemistry. Since the pioneering works developed by the groups of Diaves and Zhou, photo-promoted transformation of diazo compounds has attracted more and more attentions. On the basis of previous work, the latest progress in this field is further improved, which mainly focuses on the recent new transformation reactions of diazo compounds under visible light irradiation and the contributions reported from Chinese research group. The future development direction, as well as challenges in this field is prospected.

参考文献

[1]
Meerwein, H.; Rathjen, H.; Werner, H. Ber. Dtsch. Chem. Ges. 1942, 75, 1610.
[2]
Kirmse, W. Carbene Chemistry, Academic Press, New York, 1971, Vol. 1, pp. 9-84.
[3]
Skell, P. S.; Etter, R. M. Proc. Chem. Soc. London 1961, 443.
[4]
(a) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981.
[4]
(b) Xia, Y.; Qiu, D.; Wang, J. Chem. Rev. 2017, 117, 13810.
[4]
(c) Liu, L.; Zhang, J.-L. Chin. J. Org. Chem. 2017, 37, 1117. (in Chinese)
[4]
( 刘路, 张俊良, 有机化学, 2017, 37, 1117.)
[4]
(d) Yan, G.; Kuang, C.; Peng, C.; Wang, J. Chin. J. Org. Chem. 2009, 29, 813. (in Chinese)
[4]
( 严国兵, 匡春香, 彭程, 王剑波, 有机化学, 2009, 29, 813.)
[4]
(e) Tang, M.; Xing, D.; Cai, M.; Hu, W. Chin. J. Org. Chem. 2014, 34, 1268. (in Chinese)
[4]
( 唐敏, 邢栋, 蔡茂强, 胡文浩, 有机化学, 2014, 34, 1268.)
[5]
(a) Xuan, J.; Xiao, W.-J. Angew. Chem., nt. Ed. 2012, 51, 6828.
[5]
(b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
[5]
(c) Chen, Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Sci. China Chem. 2019, 62, 24.
[5]
(d) Cai, B.-G.; Xuan, J.; Xiao, W.-J. Sci. Bull. 2019, 64, 337.
[5]
(e) Xuan, J.; He, X.-K.; Xiao, W.-J. Chem. Soc. Rev. 2020, 49, 2546.
[6]
(a) Jurberg, I. D.; Davies, H. M. L. Chem. Sci. 2018, 9, 5112.
[6]
(b) Xiao, T.; Mei, M.; He, Y.; Zhou, L. Chem. Commun. 2018, 54, 8865.
[7]
Jana, S.; Pei, C.; Empel, C.; Koenigs, R. M. Angew. Chem., nt. Ed. 2021, 60, 13271.
[8]
Ciszewski, Ł. W.; Rybicka-Jasińska, K.; Gryko, D. Org. Biomol. Chem. 2019, 17, 432.
[9]
(a) Yang, Z.; Stivanin, M. L.; Jurberg, I. D.; Koenigs, R. M. Chem. Soc. Rev. 2020, 49, 6833.
[9]
(b) Durka, J.; Turkowska, J.; Gryko, D. ACS Sustainable Chem. Eng. 2021, 9, 8895.
[10]
(a) Xu, Y.; Lv, G.; Yan, K.; He, H.; Li, J.; Luo, Y.; Lai, R.; Hai, L.; Wu, Y.; Chem. Asian J. 2020, 15, 1945.
[10]
(b) Yan, K.; He, H.; Li, J.; Luo, Y.; Lai, R.; Guo, L.; Wu, Y. Chin. Chem. Lett. 2021, DOI: 10.1016/j.cclet.2021.05.031.
[11]
Guo, Y.; Nguyen, T. V.; Koenigs, R. M. Org. Lett. 2019, 21, 8814.
[12]
Zhao, S.; Cheng, X.-X.; Gao, N.; Qian, M.; Chen, X. J. Org. Chem. 2021, 86, 7131.
[13]
Reiser, O. Isr. J. Chem. 2016, 56, 531.
[14]
(a) Empel, C.; Koenigs, R. M. J. Flow Chem. 2020, 10, 157.
[14]
(b) Hommelsheim, R.; Guo, Y.; Yang, Z.; Empel, C.; Koenigs, R. M. Angew. Chem., nt. Ed. 2019, 58, 1203.
[15]
Klöpfer, V.; Eckl, R.; Floß, J.; Roth, P. M. C.; Reiser, O.; Barham, J. P. Green Chem. 2021, 23, 6366.
[16]
Guha, S.; Gadde, S.; Kumar, N.; Black, D. S.; Sen, S. J. Org. Chem. 2021, 86, 5234.
[17]
Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981.
[18]
(a) He, F.; Li, F.; Koenigs, R. M. J. Org. Chem. 2020, 85, 1240.
[18]
(b) He, F.; Koenigs, R. M. Chem. Commun. 2019, 55, 4881.
[18]
(c) Stivanin, M. L.; Fernandes, A. A. G.; Silva, A. F.; Okada Jr, C. Y.; Jurberg, I. D. Adv. Synth. Catal. 2020, 362, 1106.
[19]
Itsuno, S.; Matsumoto, T.; Sato, D.; Inoue, T. J. Org. Chem. 2000, 65, 5879.
[20]
Qian, L.; Cai, B.-G.; Li, L.; Xuan, J. Org. Lett. 2021, 23, 6951.
[21]
Lu, F.-D.; He, G.-F.; Lu, L.-Q.; Xiao, W.-J. Green Chem. 2021, 23, 5379.
[22]
Cai, B.-G.; Chen, Z.-L.; Xu, G.-Y.; Xuan, J.; Xiao, W.-J. Org. Lett. 2019, 21, 4234.
[23]
Cai, B.-G.; Li, Q.; Zhang, Q,; Li, L.; Xuan, J. Org. Chem. Front. 2021, 8, 5982.
[24]
(a) Zhou, S.-J.; Cheng, X.; Hu, C.-X.; Xu, G.-Y.; Xiao, W.-J.; Xuan, J. Sci. China Chem. 2021, 64, 61.
[24]
(b) Cheng, X.; Zhou, S.-J.; Xu, G.-Y.; Wang, L.; Yang, Q.-Q.; Xuan, J. Adv. Synth. Catal. 2020, 362, 523.
[25]
Zhou, S.-J.; Cai, B.-G.; Hu, C.-X.; Cheng, X.; Li, L.; Xuan, J. Chin. Chem. Lett. 2021, 32, 2577.
[26]
Yang, J.; Wang, G.; Zhou, H.; Li, Z.; Ma, B.; Song, M.; Sun, R.; Huo, C. Org. Biomol. Chem. 2021, 19, 394.
[27]
Yang, J.; Duan, J.; Wang, G.; Zhou, H.; Ma, B.; Wu, C.; Xiao, J. Org. Lett. 2020, 22, 7284.
[28]
Maiti, D.; Das, R.; Sen, S. J. Org. Chem. 2021, 86, 2522.
[29]
Qian, L.-Z.; Yan, X.; Cui, Y.-S.; Sun, Q.; Duan, X.; Zhuang, K.-Q.; Chen, L.; Qiu, J.-K.; Guo, K. Adv. Synth. Catal. 2020, 362, 5093.
[30]
Yang, J.; Wang, G.; Chen, S.; Ma, B.; Zhou, H.; Song, M.; Liu, C.; Huo, C. Org. Biomol. Chem. 2020, 18, 9494.
[31]
Kirmse, W.; Kapps, M. Chem. Ber. 1968, 101, 994.
[32]
Hommelsheim, R.; Guo, Y.; Yang, Z.; Empel, C.; Koenigs, R. M. Angew. Chem., nt. Ed. 2019, 58, 1203.
[33]
O’Hagan, D. Chem. Soc. Rev. 2008, 37, 308.
[34]
Yang, J.; Wang, J.; Huang, H.; Qin, G.; Jiang, Y.; Xiao, T. Org. Lett. 2019, 21, 2654.
[35]
Wang, Z.; Xu, X.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927.
[36]
Lu, J.; Li, L.; He, X.-K.; Xu, G.-Y.; Xuan, J. Chin. J. Chem. 2021, 39, 1646.
[37]
Khade, V. V.; Thube, A. S.; Warghude, P. K.; Bhat, R. G. Tetrahedron Lett. 2021, 77, 153258.
[38]
Xie, J.; Suleman, M.; Wang, Z.; Mao, X.; Mao, B.; Fan, J.; Lu, P.; Wang, Y. Org. Biomol. Chem. 2021, 19, 6341.
[39]
Cheng, R.; Qi, C.; Wang, L.; Xiong, W.; Liu, H.; Jiang, H. Green Chem. 2020, 22, 4890.
[40]
Crespo, L.; Sanclimens, G.; Pons, M.; Giralt, E.; Royo, M.; Albericio, F. Chem. Rev. 2005, 105, 1663.
[41]
Cai, B.-G.; Luo, S.-S.; Li, L.; Li, L.; Xuan, J.; Xiao, W.-J. CCS Chem. 2020, 2, 2764.
[42]
Cai, B.-G.; Li, L.; Xu, G.-Y.; Xiao, W.-J; Xuan, J. Photochem. Photobiol. Sci. 2021, 20, 823.
[43]
Roy, S.; Kumar, G.; Chatterjee, I. Org. Lett. 2021, 23, 6709.
[44]
Cheng, X.; Cai, B.-G.; Mao, H.; Lu, J.; Li, L.; Wang, K.; Xuan, J. Org. Lett. 2021, 23, 4109.
[45]
Chen, J.; Liu, S.; Lv, X.; Hong, K.; Lei, J.; Xu, X.; Hu, W. J. Org. Chem. 2020, 85, 13920
[46]
Ye, C.; Cai, B.-G.; Lu, J.; Cheng, X.; Li, L.; Pan, Z.-W. Xuan, J. J. Org. Chem. 2021, 86, 1012.
文章导航

/