综述与进展

环糊精衍生物及包合物构建荧光探针的研究进展

  • 何雨晴 ,
  • 陈琳 ,
  • 贺瑞丽 ,
  • 钟克利 ,
  • 汤立军
展开
  • a 渤海大学化学与材料工程学院 辽宁锦州 121013
    b 辽宁省检验检测认证中心 沈阳 110000
† 共同第一作者

收稿日期: 2021-08-16

  修回日期: 2021-10-21

  网络出版日期: 2021-11-10

基金资助

辽宁省自然科学基金指导计划(2020-MS-289); 辽宁特聘教授支持计划资助项目

Research Progress of Fluorescence Probes Constructed by Cyclodextrin Derivatives and Inclusion Complexes

  • Yuqing He ,
  • Lin Chen ,
  • Ruili He ,
  • Keli Zhong ,
  • Lijun Tang
Expand
  • a College of Chemistry and Material Engineering, Bohai University, Jinzhou, Liaoning 121013
    b Liaoning Inspection, Examination & Certification Centre, Shenyang 121013
† These authors contributed equally to this work.
* Corresponding authors. E-mail: ;

Received date: 2021-08-16

  Revised date: 2021-10-21

  Online published: 2021-11-10

Supported by

Natural Science Foundation of Liaoning Province(2020-MS-289); Program for Distinguished Professor of Liaoning Province

摘要

环糊精是超分子化学中的一类重要主体化合物, 在药物缓释、化学传感、对映体分离以及新型材料等众多领域都得到了广泛的应用. 由于环糊精具有外亲水内疏水的桶形结构, 其空腔内可以插入具有识别功能的受体分子或荧光染料,可通过螯合或置换方式实现对目标分子的识别, 因此基于环糊精衍生物及包合物构建荧光探针也受到了人们的极大关注. 总结了基于环糊精设计合成的荧光探针在检测金属离子、阴离子和分子等方面的应用, 重点描述了识别性能和识别机制, 为环糊精衍生物及包合物在荧光检测领域的应用提供理论依据.

本文引用格式

何雨晴 , 陈琳 , 贺瑞丽 , 钟克利 , 汤立军 . 环糊精衍生物及包合物构建荧光探针的研究进展[J]. 有机化学, 2022 , 42(3) : 785 -795 . DOI: 10.6023/cjoc202108024

Abstract

Cyclodextrins are a kind of the most important host compounds in supramolecular chemistry, and have been widely used in many fields such as drug release, chemical sensing, enantiomer separation and new materials. Because cyclodextrins have a barrel-shaped structure that is hydrophilic on the outside and hydrophobic on the inside, receptors with recognition functions or fluorescent dyes can be inserted into the cavity of cyclodextrins, which can realize the recognition of target molecules by chelation or displacement. Therefore, construction of fluorescent probes based on cyclodextrins derivatives and inclusion complexes has been received great attention. In this paper, the applications of fluorescent probes that designed and synthesized based on cyclodextrins in the detection of metal ions, anions and molecules are summarized, the recognition performance and mechanisms are described, and it is expected to provide theoretical basis for the application of cyclodextrin derivatives and inclusion complexes in the field of fluorescence detection.

参考文献

[1]
Tang, L.; Xia, J.; Zhong, K.; Tang, Y.; Gao, X.; Li, J. Dyes Pigm. 2020, 178, 108379.
[2]
Peng, R.; Xu, Y.; Cao, Q. Chin. Chem. Lett. 2018, 29, 1465.
[3]
Luo, X.; Li, J.; Zhao, J.; Gu, L.; Qian, X.; Yang, Y. Chin. Chem. Lett. 2019, 30, 839.
[4]
He, L.; Dong, B.; Liu, Y.; Lin, W. Chem. Soc. Rev. 2016, 45, 6449.
[5]
Tang, B.; Du, X.; Qin, A.; Wang, J. Chin. Sci. Bull. 2020, 65, 1428.
[6]
Wang, D.; Fan, X.; Sun, S.; Du, S.; Li, H.; Zhu, J.; Tang, Y.; Chang, M.; Xu, Y. Sens Actuators, B 2018, 264, 304.
[7]
Ege, Z. R.; Akan, A.; Oktar, F. N.; Lin, C. C.; Kuruca, D. S.; Karademir, B.; Sahin, Y. M.; Erdemir, G.; Gunduz, O. J. Biomed. Mater. Res. B, Appl. Biomater. 2019, 108, 538.
[8]
Kang, Y. F.; Niu, L. Y.; Yang, Q. Z. Chin. Chem. Lett. 2019, 30, 1791.
[9]
Gao, W.; Wang, W.; Yao, S.; Wu, S.; Zhang, H.; Zhang, J.; Jing, F.; Mao, H.; Jin, Q.; Cong, H. Anal. Chim. Acta 2017, 958, 77.
[10]
Zhu, Z.; Liu, W.; Cheng, L.; Li, Z.; Xi, Z.; Yi, L. Tetrahedron Lett. 2015, 56, 3909.
[11]
Tang, L.; Zhou, L.; Yan, X.; Zhong, K.; Gao, X.; Liu, X.; Li, J. Dyes Pigm. 2020, 182, 108644.
[12]
Zhong, K.; He, Y.; Deng, L.; Yan, X.; Li, X.; Tang, Y.; Hou, S.; Tang, L. Anal. Chim. Acta 2020, 1127, 49.
[13]
Liu, X.; Li, N.; Li, M.; Chen, H.; Zhang, N.; Wang, Y.; Zheng, K. Coord. Chem. Rev. 2020, 404.
[14]
Yu, L.; Qiao, Y.; Miao, L.; He, Y.; Zhou, Y. Chin. Chem. Lett. 2018, 29, 1545.
[15]
Tian, B.; Liu, Y.; Liu, J. Carbohydr. Polym. 2020, 116871.
[16]
Szente, L.; Szejtli, J. Trends Food Sci. Technol. 2004, 15, 137.
[17]
Zhang, Y.; Liu, Y. Chin. J. Org. Chem. 2020, 40, 3802. (in Chinese)
[17]
(张依, 刘育, 有机化学, 2020, 40, 3802.)
[18]
Adeoye, O.; Cabral-Marques, H. Int. J. Pharm. 2017, 531, 521.
[19]
Tian, B.; Hua, S.; Tian, Y.; Liu, J. Environ. Sci. Pollut. Res. 2020, 28, 1317.
[20]
Zhang, Y. M.; Liu, Y. H.; Liu, Y. Adv. Mater. 2020, 32, 1806158.
[21]
Tian, B.; Xiao, D.; Hei, T.; Ping, R.; Hua, S.; Liu, J. Polym. Int. 2020, 69, 597.
[22]
Luo, X.; Gu, L.; Qian, X.; Yang, Y. Chem. Commun. 2020, 56, 9067.
[23]
Tian, X.; Zuo, M.; Niu, P.; Wang, K.; Hu, X. Chin. J. Org. Chem. 2020, 40, 1823. (in Chinese)
[23]
(田雪琪, 左旻瓒, 牛蓬勃, 王开亚, 胡晓玉, 有机化学, 2020, 40, 1823.)
[24]
Liu, Z.; Dai, X.; Sun, Y.; Liu, Y. Aggregate 2020, 1, 31.
[25]
Zhang, N.; Chen, Y.; Yu, M.; Liu, Y. Chem. Asian J. 2009, 4, 1697.
[26]
Zhang, L.; Hu, W.; Yu, L.; Wang, Y. Chem. Commun. 2015, 51, 4298.
[27]
Khan, R. I.; Pitchumani, K. RSC Adv. 2016, 6, 20269.
[28]
Yang, S. L.; Jiang, W. N.; Tang, Y.; Xu, L.; Gao, B.-H.; Xu, H.-J. Chin. J. Anal. Chem. 2019, 47, e19059.
[29]
Maniyazagan, M.; Rameshwaran, C.; Mariadasse, R.; Jeyakanthan, J.; Premkumar, K.; Stalin, T. Sens. Actuators, B 2017, 242, 1227.
[30]
Prabu, S.; Mohamad, S. J. Mol. Struct. 2020, 1204, 127528.
[31]
Meng, H. M.; Fu, T.; Zhang, X. B.; Wang, N. N.; Tan, W.; Shen, G. L.; Yu, R. Q. Anal. Chem. 2012, 84, 2124.
[32]
Maniyazagan, M.; Mohandoss, S.; Sivakumar, K.; Stalin, T. Spectrochim. Acta, Part A 2014, 133, 73.
[33]
Sivakumar, K.; Parameswari, M.; Stalin, T. J. Carbohydr. Chem. 2016, 35, 118.
[34]
Wang, J.; Qiu, F.; Wu, H.; Li, X.; Zhang, T.; Niu, X.; Yang, D.; Pan, J.; Xu, J. Spectrochim. Acta, Part A 2017, 179, 163.
[35]
Teranishi, K.; Nishiguchi, T. Anal. Biochem. 2004, 325, 185.
[36]
Gao, F.; Zhang, L.; Wang, L.; She, S.; Zhu, C. Anal. Chim. Acta 2005, 533, 25.
[37]
Ren, S. H.; Liu, S. G.; Ling, Y.; Li, N. B.; Luo, H. Q. Spectrochim. Acta, Part A 2019, 212, 199.
[38]
Li, Q.; Zhang, Y.; Jin, Y.; Yang, Q.; Du, J.; Li, Y. RSC Adv. 2015, 5, 68815.
[39]
Mohandoss, S.; Sivakamavalli, J.; Vaseeharan, B.; Stalin, T. Sens. Actuators, B 2016, 234, 300.
[40]
Wang, L. Y.; Dong, L. Y.; Chen, L.; Fan, Y. B.; Wu, J.; Wang, X. F.; Xie, M. X. New J. Chem. 2015, 39, 555.
[41]
Tan, S. Y.; Teh, C.; Ang, C. Y.; Li, M.; Li, P.; Korzh, V.; Zhao, Y. Nanoscale 2017, 9, 2253.
[42]
Sun, Q.; Fang, S.; Fang, Y.; Qian, Z.; Feng, H. Talanta 2017, 167, 513.
[43]
Wang, M.; Su, K.; Cao, J.; She, Y.; Abd, El-Aty, A. M.; Hacimuftuoglu, A.; Wang, J.; Ya, n M.; Hong, S.; Lao, S.; Wang, Y. Talanta 2019, 192, 295.
[44]
Lu, X.; Fan, Z. Spectrochim. Acta, Part A 2019, 216, 342.
[45]
Liu, L.; Yi, G.; Yang, L.; Li, K.; Dong, G.; Sun, Y.; Zhang, H. Carbohydr. Polym. 2020, 116367.
[46]
Halawa, M. I.; Wu, F.; Fereja, T. H.; Lou, B.; Xu, G. Sens. Actuators, B 2018, 254, 1017.
[47]
Zhu, X.; Hu, Y.; Gong, A. Anal. Chim. Acta 2007, 592, 24.
[48]
Zhu, X.; Sun, J.; Hu, Y. Anal. Chim. Acta 2007, 596, 298.
[49]
Patra, D. Biosens. Bioelectron. 2010, 25, 1149.
[50]
Wu, X.; Lin, L. R.; Huang, Y. J.; Li, Z.; Jiang, Y. B. Chem. Commun. 2012, 48, 4362.
[51]
Wang, X.; Zeng, H.; Zhao, L.; Lin, J.-M. Anal. Chim. Acta 2006, 556, 313.
[52]
Zhu, X.; Xu, S. Spectrochim. Acta, Part A 2010, 77, 566.
[53]
Paul, B. K.; Guchhait, N. J. Colloid Interface Sci. 2011, 353, 237.
[54]
Gao, F.; Shang, Y. J.; Zhang, L.; She, S. K.; Wang, L. Anal. Lett. 2004, 37, 1285.
[55]
Wang, L.; Bian, G.; Wang, L.; Dong, L.; Chen, H.; Xia, T. Spectrochim. Acta, Part A 2005, 61, 1201.
[56]
Liu, P.; Sun, S.; Guo, X.; Yang, X.; Huang, J.; Wang, K.; Wang, Q.; Liu, J.; He, L. Anal. Chem. 2015, 87, 2665.
[57]
Huang, H.; Yang, X.; Wang, K.; Wang, Q.; Guo, Q.; Huang, J.; Liu, J.; Guo, X.; Li, W.; He, L. Talanta 2015, 144, 529.
[58]
Song, C.; Li, B.; Yang, X.; Wang, K.; Wang, Q.; Liu, J.; Huang, J. Analyst 2016, 142, 224.
[59]
Zhao, X.; Chen, Y.; Dai, X.; Zhou, W.; Li, J.; Liu, Y. Adv. Photonics Res. 2020, 1, 2000007.
[60]
Yu, J.; Chen, Y.; Li, J. J.; Liu, Y. J. Mater. Chem. C 2017, 5, 799.
文章导航

/