α,β-不饱和硝酮的合成及其应用的研究进展
收稿日期: 2021-09-03
修回日期: 2021-10-30
网络出版日期: 2021-11-10
基金资助
国家自然科学基金(21871062); 国家自然科学基金(22071035); 广西省自然科学基金(2018GXNSFAA281329); 广西教育厅研究生创新计划(YCBZ2021039); 广西高校千名中青年骨干教师培育计划资助项目
Advances on the Synthesis and Application of α,β-Unsaturated Nitrones
Received date: 2021-09-03
Revised date: 2021-10-30
Online published: 2021-11-10
Supported by
National Natural Science Foundation of China(21871062); National Natural Science Foundation of China(22071035); Natural Science Foundation of Guangxi Province(2018GXNSFAA281329); Graduate Innovation Project of Guangxi Education(YCBZ2021039); “One thousand Young and Middle-Aged College and University Backbone Teachers Cultivation Program” of Guangxi
在有机合成化学中, 硝酮作为有机合成中重要的1,3-偶极子, 由于其具有稳定性好、易合成和反应活性高等优点, 能够参与各种有机合成反应, 如氧转移反应、环加成反应、重排反应以及C—H键活化等, 可以用于合成各种各样的杂环化合物, 是进一步构建复杂分子的重要有机砌块. 近年来, α,β-不饱和硝酮由于其α,β-不饱和键具有较强的化学转化能力, 可以参与各种新型的化学转化合成结构新颖的杂环化合物, 从而引起了合成化学家的广泛关注. 综述了近十年来α,β-不饱和硝酮合成的新策略, 及其应用于构建各类骨架新颖的含氮杂环化合物, 包括氧转移反应、与亲核试剂或自由基的加成反应以及各种环加成反应.
邹宁 , 覃小婷 , 王治新 , 石维敏 , 莫冬亮 . α,β-不饱和硝酮的合成及其应用的研究进展[J]. 有机化学, 2021 , 41(12) : 4535 -4553 . DOI: 10.6023/cjoc202109007
Nitrones, served as one of the most important 1,3-dipoles in organic synthetic chemistry, can participate in various organic synthetic reactions to synthesize various heterocyclic compounds, such as nucleophilic addition, cycloaddition reaction, rearrangement reaction, C—H bond activation, etc. They are very important organic building blocks for the further construction of complex molecules. In recent years, α,β-unsaturated nitrone has attracted widespread attention from synthetic chemists because of its α,β-unsaturated bond containing rich chemical transformations, and can take part in various new chemical conversions to construct new structural heterocyclic compounds. The new strategies for the preparation of α,β-unsaturated nitrones in the past ten years, and their applications to construct nitrogen heterocyclic compounds, including O-transfer reaction, addition of nucleophiles and radical reagents, and various cycloaddition reactions, are reviewed.
[1] | (a) Smith, L. L. Chem. Rev. 1938, 38, 193. |
[1] | (b) Bartoli, G.; Marcantoni, E.; Petrini, M. J. Org. Chem. 1990, 55, 4456. |
[1] | (c) Braum, K. R.; Freysoldt, T. H. E.; Wierschem, F. Chem. Soc. Rev. 2005, 34, 507. |
[1] | (d) Pellissier, H. Tetrahedron 2007, 63, 3235. |
[1] | (e) Nair, V.; Suja, T. D. Tetrahedron 2007, 63, 12247. |
[1] | (f) Brandi, A.; Cardona, F.; Cicchi, S.; Cordero, F. M.; Goti, A. Chem.-Eur. J. 2009, 15, 7808. |
[1] | (g) Najera, C.; Sansano, J. M. Org. Biomol. Chem. 2009, 7, 4567. |
[1] | (h) Kissane, M.; Maguire, A. R. Chem. Soc. Rev. 2010, 39, 845. |
[2] | (a) Saha, N.; Biswas, T.; Chattopadhyay, S. K. Org. Lett. 2011, 13, 5128. |
[2] | (b) Hodges, A. J.; Adams, J. P.; Bond, A. D.; Holmes, A, B.; Press, N. J.; Roughley, S. D.; Ryan, J. H.; Saubern, S.; Smith, C. J.; Turnbull, M. D.; Newton, A. F. Org. Biomol. Chem. 2012, 10, 8963. |
[2] | (c) Martella, D.; Cardona, F.; Parmeggiani, C.; Franco, F.; Tamayo, J. A.; Robina, I.; Moreno-Clavijo, E.; Moreno-Vargas, A. J.; Goti, A. Eur. J. Org. Chem. 2013, 19, 4047. |
[2] | (d) Ideue, E.; Shimokawa, J.; Fukuyama, T. Org. Lett. 2015, 17, 4964. |
[3] | (a) Breslow, R. Angew. Chem., Int. Ed. 1968, 7, 565. |
[3] | (b) Black, D. S. C.; Crozier, R. F.; Davis, V. C. Synthesis 1975, 205. |
[3] | (c) Claire, A. Future Med. Chem. 2012, 4, 9. |
[3] | (d) Ma, L.-L.; Wang, W.; Wang, G.-C. RSC Adv. 2016, 6, 53839. |
[3] | (e) Clementson, S.; Radaelli, A.; Fjebye, K.; Tanner, D.; Jessing, M. Org. Lett. 2019, 21, 4763. |
[3] | (f) Zhao, D.; Zhang, J.; Xie, Z. J. Am. Chem. Soc. 2015, 137, 13938. |
[4] | (a) Zhou, Z.; Liu, G.; Chen, Y.; Lu, X. Adv. Synth. Catal. 2015, 357, 2944. |
[4] | (b) Wang, H.; Moselage, M.; Gonzalez, M. J.; Ackermann, L. ACS Catal. 2016, 6, 2705. |
[4] | (c) Bai, D.; Jia, Q.; Xu, T.; Zhang, Q.; Wu, F.; Ma, C.; Liu, B.; Chang, J.; Li, X. J. Org. Chem. 2017, 82, 9877. |
[4] | (d) Pandey, A. K.; Kang, D.; Han, S. H.; Lee, H.; Mishra, N. K.; Kim, H. S.; Jung, Y. H.; Hong, S.; Kim, I. S. Org. Lett. 2018, 20, 4632. |
[4] | (e) Li, Y.; Xie, F.; Liu, Y.; Yang, X.; Li, X. Org. Lett. 2018, 20, 437. |
[4] | (f) Murahashi, S.-I.; Imada, Y. Chem. Rev. 2019, 119, 4684. |
[5] | For some examples with alkenes, see: (a) Confalone, P. N.; Huie, E. M. Org. React. 2004, 36, 1. |
[5] | (b) Morita, N.; Fukui, K.; Irikuchi, J.; Sato, H.; Takano, Y.; Okamoto, I.; Ishibashi, H.; Tamura, O. J. Org. Chem. 2008, 73, 7164. |
[5] | (c) Nguyen, T. B.; Martel, A.; Dhal, R.; Dujardin, G. Org. Lett. 2008, 10, 4493. |
[5] | (d) Bokach, N. A.; Kuznetsov, M. L.; Kukushkin, V. Y. Coord. Chem Rev. 2011, 255, 2946. |
[5] | (e) Lahiri, R.; Palanivel, A.; Kulkarni, S. A.; Vankar, Y. D. J. Org. Chem. 2014, 79, 10786. |
[5] | (f) Kumar, C. V. S.; Ramana, C. V. Org. Lett. 2015, 17, 2870. |
[5] | (g) Ghosh, A.; Mane, M. V.; Rode, H. B.; Patil, S. A.; Sridhar, B.; Dateer, R. B. Chem.-Asian. J. 2020, 15, 1. |
[6] | For some examples with alkynes, see: (a) Lu, C.; Dubrovskiy, A. V.; Larock, R. C. J. Org. Chem. 2012, 77, 2279. |
[6] | (b) Bhunia, S.; Chang, C. J.; Liu, R. S. Org. Lett. 2012, 14, 5522. |
[6] | (c) Mckay, C. S.; Chigrinova, M.; Blake, J. A.; Peaccki, J. P. Org. Biomol. Chem. 2012, 10, 3066. |
[6] | (d) Zhang, Y. Q.; Zhang, J. L. Chem. Commun. 2012, 48, 4710. |
[6] | (e) Qi, Z. S.; Wang, M.; Li, X. W. Org. Lett. 2013, 15, 5440. |
[6] | (f) Huehls, C. B.; Huang, J.; Yang, J. Tetrahedron 2015, 71, 3593. |
[6] | (g) Huple, D. B.; Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348. |
[6] | (i) Tangara, S.; Aupic, C.; Kanazawa, A.; Poisson, J.-F.; Py, S. Org. Lett. 2017, 19, 4842. |
[6] | (h) Malig, T. C.; Yu, D.; Hein, J. E. J. Am. Chem. Soc. 2018, 140, 9167. |
[6] | (i) Zhang, G.; Alshreimi, A. S.; Alonso, L.; Antar, A.; Yu, H.-C.; Islan, S. M.; Anderson, L. L. Angew. Chem., Int. Ed. 2021, 60, 13089. |
[7] | (a) Malinina, J.; Tran, T. Q.; Stepakov, A. V.; Gurzhiy, V. V.; Starova, G. L.; Kostikov, R. R.; Molchanov, A. P. Tetrahedron Lett. 2014, 55, 3663. |
[7] | (b) Anderson, L. L.; Kroc, M. A.; Reidl, T. W.; Son, J J. Org. Chem. 2016, 81, 9521. |
[7] | (c) Lee, W.; Yuan, M.; Ashley, C.; Onwu, A.; Gutierrez, O. Org. Biomol. Chem. 2019, 17, 1767. |
[8] | (a) Namitharan, K.; Pitchumani, K. Org. Lett. 2011, 13, 5278. |
[8] | (b) Qin, C.; Davies, H. M. L. J. Am. Chem. Soc. 2013, 135, 14516. |
[8] | (c) Wozniak, L.; Krajewska, O. S.; Michalak, M. Chem. Commun. 2015, 51, 1933. |
[9] | (a) Bartoli, G.; Marcantoni, E.; Petrini, M. J. Org. Chem. 1990, 55, 4456. |
[9] | (b) Denmark, S. E.; Montgomery, J. I. J. Org. Chem. 2006, 71, 6211. |
[9] | (c) Yang, J. Synlett 2012, 23, 2293. |
[10] | (a) Shi, W.-M.; Ma, X.-P.; Su, G.-F.; Mo, D.-L. Org. Chem. Front. 2016, 3, 116. |
[10] | (b) Anderson, L. L. Asian J. Org. Chem. 2016, 5, 9. |
[10] | (c) Merino, P.; Tejero, T.; Delso, I.; Matute, R. Org. Biomol. Chem. 2017, 15, 3364. |
[10] | (d) Murahashi, S.-I.; Imada, Y. Chem. Rev. 2019, 119, 4684. |
[10] | (e) Sukhorukov, A. Y. Adv. Synth. Catal. 2020, 362, 724. |
[10] | (f) Thakur, S.; Das, A.; Das, T. New J. Chem. 2021, 45, 11420. |
[10] | (g) Wang, L.; Zhang, Z.; Han, H.; Liu, X.; Bu, Z.; Wang, Q. Chin. J. Org. Chem. 2021, 41, 12. (in Chinese) |
[10] | ( 王乐乐, 张子莹, 韩华彬, 刘雄利, 卜站伟, 王琪琳, 有机化学, 2021, 41, 12.) |
[11] | (a) Confalone, P. N.; Huie, E. M. Org. React. 1988, 36, 1. |
[11] | (b) Soldaini, G.; Cardona, F.; Goti, A. Org. Lett. 2007, 9, 473. |
[11] | (c) Gella, C.; Ferrer, E.; Alibes, R.; Busque, F.; de March, P.; Figueredo, M.; Font, J. J. Org. Chem. 2009, 74, 6365. |
[11] | (d) Hota, S. K.; Chatterjee, A.; Bhattacharya, P. K.; Chattopadhyay, P. Green Chem. 2009, 11, 169. |
[11] | (e) Forcato, M.; Mba, M.; Nugent, W. A.; Licini, G. Eur. J. Org. Chem. 2010, 740. |
[11] | (f) Abrantes, M.; Goncalves, I. S.; Pillinger, M.; Vurchio, C.; Cordero, F. M.; Brandi, A. Tetrahedron Lett. 2011, 52, 7079. |
[11] | (g) Zhang, Y. H.; Wu, M. Y.; Huang, W. C. RSC Adv. 2015, 5, 105825. |
[12] | Hood, T. S.; Huehls, C. B.; Yang, J. Tetrahedron Lett. 2012, 53, 4679. |
[13] | Ma, X.-P.; Shi, W.-M.; Mo, X.-L.; Li, X.-H.; Li, L.-G.; Pan, C.-X.; Chen, B.; Su, G.-F.; Mo, D.-L. J. Org. Chem. 2015, 80, 10098. |
[14] | Fraboni, A. J.; Brenner-Moyer, S. E. Org. Lett. 2016, 18, 2146. |
[15] | Li, Y.; Ng, J. S.; Wang, B.; Chiba, S. Org. Lett. 2021, 23, 5060. |
[16] | (a) Ma, X.-P.; Liu, F.-P.; Mo, D.-L. Chin. J. Org. Chem. 2017, 37, 1069. (in Chinese) |
[16] | ( 马小盼, 刘凤萍, 莫冬亮, 有机化学, 2017, 37, 1069.) |
[16] | (b) Chen, J.-Q.; Li, J.-H.; Dong, Z.-B. Adv. Synth. Catal. 2020, 362, 3311. |
[17] | (a) Mo, D.-L.; Wink, D. A.; Anderson, L. L. Org. Lett. 2012, 14, 5180. |
[17] | (b) Chen, C.-H.; Liu, Q.-Q.; Ma, X.-P.; Feng, Y.; Liang, C.; Pan, C.-X.; Su, G.-F.; Mo, D.-L. J. Org. Chem. 2017, 82, 6417. |
[17] | (c) Mo, X.-L.; Chen, C.-H.; Liang, C.; Mo, D.-L. Eur. J. Org. Chem. 2018, 2018, 150. |
[18] | Kontokosta, D.; Mueller, D. S.; Mo, D.-L.; Pace, W. H.; Simpson, R. A.; Anderson, L. L. Beilstein J. Org. Chem. 2015, 11, 2097. |
[19] | Nakamura, I.; Onuma, T.; Kanazawa, R.; Nishigai, Y.; Terada, M. Org. Lett. 2014, 16, 4198. |
[20] | Li, X.; Yan, W.; Zhang, R.; Chang, H.; Gao, W.; Tian, X.; Wei, W. Synthesis 2019, 51, 4043. |
[21] | Nakamura, I.; Okamoto, M.; Sato, Y.; Terada, M. Angew. Chem., Int. Ed. 2012, 51, 10816. |
[22] | Nakamura, I.; Sato, Y.; Takeda, K.; Terada, M. Chem.-Eur. J. 2014, 20, 10214. |
[23] | Chen, F.; Yang, X.-L.; Wu, Z.-W.; Han, B. J. Org. Chem. 2016, 81, 3042. |
[24] | Huehls, C. B.; Hood, T. S.; Yang, J. Angew. Chem., Int. Ed. 2012, 51, 5110. |
[25] | Mo, D.-L.; Wink, D. J.; Anderson, L. L. Chem.-Eur. J. 2014, 20, 13217. |
[26] | Huehls, C. B.; Huang, J.; Yang, J. Tetrahedron 2015, 71, 3593. |
[27] | Pace, W. H.; Mo, D.-L.; Reidl, T. W.; Wink, D. J.; Anderson, L. L. Angew. Chem., Int. Ed. 2016, 55, 9183. |
[28] | Ma, X.-P.; Li, K.; Wu, S.-Y.; Liang, C.; Su, G.-F.; Mo, D.-L. Green. Chem. 2017, 19, 5761. |
[29] | Kroc, M. A.; Prajapati, A.; Wink, D. J.; Anderson, L. L. J. Org. Chem. 2018, 83, 1085. |
[30] | Xu, P.-P.; Liao, J.-Y.; Zhang, J.-J.; Shi, W.-M.; Liang, C.; Su, G.-F.; Mo, D.-L. Org. Lett. 2021, 23, 7482. |
[31] | Ghosh, A.; Mane, M. V.; Rode, H. B.; Patil, S. A.; Sridhar, B.; Dateer, R. B. Chem.-Asian. J. 2020, 15, 899. |
[32] | Zhao, J.; Huang, B.-Q.; Zhu, B.-C.; Ma, X.-P.; Mo, D.-L. Adv. Synth. Catal. 2021, 363, 4575. |
[33] | Mo, D.-L.; Anderson, L. L. Angew. Chem., Int. Ed. 2013, 52, 6722. |
[34] | Mo, D.-L.; Pecak, W. H.; Zhao, M.; Wink, D. J.; Anderson, L. L. Org. Lett. 2014, 16, 3696. |
[35] | Kumar, Y.; Singh, P.; Bhargave, G. New J. Chem. 2016, 40, 8216. |
[36] | Kroc, M. A.; Markiewicz, M.; Pace, W. H.; Wink, D. J.; Anderson, L. L. Chem. Commun. 2019, 55, 2309. |
[37] | Zou, N.; Jiao, J.-W.; Feng, Y.; Chen, C.-H.; Liang, C.; Su, G.-F.; Mo, D.-L. Adv. Synth. Catal. 2017, 359, 3545. |
[38] | Ma, X.-P.; Li, L.-G.; Zhao, H.-P.; Du, M.; Liang, C.; Mo, D.-L. Org. Lett. 2018, 20, 4571. |
[39] | Ma, X.-P.; Nong, C.-M.; Zhao, J.; Lu, X.; Liang, C.; Mo, D.-L. Adv. Synth. Catal. 2020, 6, 478. |
[40] | Ma, X.-P.; Nong, C.-M.; Liang, Y.-F.; Xu, P.-P.; Guo, X.-Y.; Liang, C.; Pan, C.-X.; Su, G.-F.; Mo, D.-L. Green Chem. 2020, 22, 3827. |
[41] | Chen, C.-H.; Wu, Q.-Y.; Wei, C.; Liang, C.; Su, G.-F.; Mo, D.-L. Green Chem. 2018, 20, 2722. |
[42] | Liao, J.-Y.; Wu, Q.-Y.; Lu, X.; Zou, N.; Pan, C.-X.; Liang, C.; Su, G.-F.; Mo, D.-L. Green Chem. 2019, 21, 6567. |
[43] | Zou, N.; Lan, J.-X.; Yan, G.-G.; Liang, C.; Su, G.-F.; Mo, D.-L. Org. Lett. 2020, 22, 8446. |
[44] | Zou, N.; Jiao, J.-W.; Feng, Y.; Pan, C.-X.; Liang, C.; Su, G.-F.; Mo, D.-L. Org. Lett. 2019, 21, 481. |
[45] | Jia, Q.; Li, D.; Lang, M.; Zhang, K.; Wang, J. Adv. Synth. Catal. 2017, 359, 3837. |
[46] | Hasegawa, M.; Suga, T.; Soeta, T.; Ukaji, Y. J. Org. Chem. 2020, 85, 11258. |
[47] | Buchlovic, M.; Hebanova, S.; Potacek, M. Tetrahedron 2012, 68, 3117. |
/
〈 |
|
〉 |