综述与进展

钯催化的烯烃异构化反应

  • 陈宏超 ,
  • 吴奕晨 ,
  • 于洋 ,
  • 王鹏
展开
  • a 上海大学理学院 上海 201900
    b 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032
    c 中国科学院上海有机化学研究所 中国科学院能量调控材料重点实验室 上海 200032
    d 中国科学院大学杭州高等研究院 化学与材料科学学院 杭州 310024

收稿日期: 2021-09-28

  修回日期: 2021-11-03

  网络出版日期: 2021-11-17

基金资助

国家自然科学基金(22171277); 国家自然科学基金(22101291); 国家自然科学基金(21821002); 上海“启明星”(20QA1411400)

Pd-Catalyzed Isomerization of Alkenes

  • Hong-Chao Chen ,
  • Yichen Wu ,
  • Yang Yu ,
  • Peng Wang
Expand
  • a College of Science, Shanghai University, Shanghai 201900
    b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032
    c CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Shanghai 200032
    d School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024
* Corresponding author. E-mail:

Received date: 2021-09-28

  Revised date: 2021-11-03

  Online published: 2021-11-17

Supported by

National Natural Science Foundation of China(22171277); National Natural Science Foundation of China(22101291); National Natural Science Foundation of China(21821002); Shanghai Rising-Star Program(20QA1411400)

摘要

烯烃异构反应可以从简单烯烃出发, 通过对碳碳双键立体选择性或者位置选择性调控, 实现内烯烃化合物尤其其他方法难以构建的多取代烯烃的高效合成, 原子经济性高. 详细介绍了钯催化烯烃异构化反应的反应机制, 系统总结了钯催化的烯烃顺反异构和位置选择性异构反应, 以及其在药物分子和天然产物合成中的应用.

本文引用格式

陈宏超 , 吴奕晨 , 于洋 , 王鹏 . 钯催化的烯烃异构化反应[J]. 有机化学, 2022 , 42(3) : 742 -757 . DOI: 10.6023/cjoc202109045

Abstract

Starting from commercially available simple olefins, alkene isomerization could realize the efficient construction of multi-substituted alkenes, which might be difficult to access with other synthetic methods, in an atom-economic manner via the stereoselective or positional-selective modulation of the carbon-carbon double bonds. The palladium catalyzed stereoselective (Z/E) and the positional selective isomerization reactions of alkenes are summarized. The mechanistic perspectives, and their synthetic applications in the synthesis of drug molecules and natural products are discussed in detail.

参考文献

[1]
Larsen, C. R.; Grotjahn, D. B. In Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Four Volumes, Eds.: Cornils, B.; Herrmann, W. A.; Beller, M.; Paciello, R., 2017, Wiley, pp. 1365-1378.
[2]
(a) AlMaadeed, M. A.-A.; Krupa, I. Polyolefin Compounds and Materials, Springer, Heidelberg, 2016.
[2]
(b) Severn, J. R.; Chadwick, J. C. Tailor-Made Polymers, Wiley- VCH, Weinheim, 2008.
[2]
(c) Sauter, D. W.; Taoufik, M.; Boisson, C. Polymers 2017, 9, 185.
[2]
(d) Guan, Z. B.; Popeney, C. S. Top. Organomet. Chem. 2009, 26, 179.
[2]
(e) Flisak, Z.; Sun, W. H. ACS Catal. 2015, 5, 4713.
[2]
(f) Makio, H.; Terao, H.; Iwashita, A.; Fujita, T. Chem. Rev. 2011, 111, 2363.
[2]
(g) Collins, R. A.; Russell, A. F.; Mountford, P. Appl. Petrochem. Res. 2015, 5, 153.
[2]
(h) Gibson, V. C.; Solan, G. A. Top. Organomet. Chem. 2009, 26, 107.
[2]
(i) Mu, H.; Pan, L.; Song, D.; Li, Y. Chem. Rev. 2015, 115, 12091.
[2]
(j) Chen, C. Nat. Rev. Chem. 2018, 2, 6.
[3]
(a) Besse, P.; Veschambre, H. Tetrahedron 1994, 50, 8885.
[3]
(b) Johnson, R. A.; Sharpless, K. B. In Catalytic Asymmetric Synthesis, Ed.: Ojima, I., Wiley-VCH, New York, 2000, pp. 229-280.
[3]
(c) Bonini, C.; Righi, G. A. Tetrahedron 2002, 58, 4981.
[3]
(d) Xia, Q.-H.; Ge, H.-Q.; Ye, C.-P.; Liu, Z.-M.; Su, K.-X. Chem. Rev. 2005, 105, 1603.
[3]
(e) Adolfsson, H. In Modern Oxidation Methods, Ed.: Bäckvall, J.-E., Wiley-VCH, Weinheim, 2010, pp. 21-49.
[3]
(f) De Faveri, G.; Ilyashenko, G.; Watkinson, M. Chem. Soc. Rev. 2011, 40, 1722.
[3]
(g) Feng, X. Q.; Du, H. F. Chin. J. Chem. 2021, 39, 2016.
[4]
(a) Cerveny, L. Catalytic Hydrogenation, Elsevier, Amsterdam, 1986.
[4]
(b) Rylander, P. The Catalytic Hydrogenation in Organic Syntheses, Ed.: Rylander, P., Academic Press, Inc, San Diego, 1979, pp. 31-63.
[4]
(c) Nishimura, S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis, Wiley-VCH Verlag GmbH, New York, 2001.
[4]
(d) de Vries, J. G.; Elsevier, C. J. The Handbook of Homoge-neous Hydrogenation, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008.
[4]
(e) Xie, J.-H.; Zhou, Q.-L. Acta Chim. Sinica 2012, 70, 1427. (in Chinese)
[4]
(谢建华, 周其林, 化学学报, 2012, 70, 1427.)
[4]
(f) Zhao, D.; Candish, L.; Paul, D.; Glorius, F. ACS Catal. 2016, 6, 5978.
[4]
(g) Seo, C. S. G.; Morris, R. H. Organometallics 2019, 38, 47.
[4]
(h) Verendel, J. J.; Pamies, O. P.; Diéguez, M.; Andersson, P. G. Chem. Rev. 2014, 114, 2130.
[5]
(a) Cabri, W.; Candiani, I. Acc. Chem. Res. 1995, 28, 2.
[5]
(b) de Meijere, A.; Meyer, F. E. Angew. Chem., nt. Ed. 1995, 33, 2379.
[5]
(c) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009.
[5]
(d) Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945.
[5]
(e) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., nt. Ed. 2005, 44, 4442.
[5]
(f) Polshettiwar, V.; Molnár, Á. Tetrahedron 2007, 63, 6949.
[5]
(g) Le Bras, J.; Muzart, J. Chem. Rev. 2011, 111, 1170.
[5]
(h) Ruan, J.; Xiao, J. Acc. Chem. Res. 2011, 44, 614.
[5]
(i) McCartney, D.; Guiry, P. J. Chem. Soc. Rev. 2011, 40, 5122.
[5]
(j) Sigman, M. S.; Werner, E. W. Acc. Chem. Res. 2012, 45, 874.
[5]
(k) Wang, S.-S.; Yang, G.-Y. Catal. Sci. Technol. 2016, 6, 2862.
[5]
(l) Roy, D.; Uozumi, Y. Adv. Synth. Catal. 2018, 360, 602.
[5]
(m) Gao, S. Q.; Shi, L. L.; Chang, L.; Wang, B. L.; Fu, J. K. Synthesis 2021, 53, 861.
[6]
(a) Żukowska, K. Olefin Metathesis: Theory and Practice, Ed.: Grela, K., Wiley, New Jersey, 2014, pp. 39-73.
[6]
(b) Basset, J. M.; Callens, E.; Riache, N. Handbook of Metathesis, Vol. 1, Eds.: Grubbs, R. H.; Wenzel, A. G., Wiley-VCH, Weinheim, 2015, pp. 33-70.
[6]
(c) Copéret, C.; Berkson, Z. J.; Chan, K. W.; Silva, J. D. J.; Gordon, C. P.; Pucino, M.; Zhizhko, P. A. Chem. Sci. 2021, 12, 3092.
[7]
(a) Legnani, L.; Bhawal, B. N.; Morandi, B. Synthesis 2017, 776.
[7]
(b) van der Vlugt, J. I. Chem. Soc. Rev. 2010, 39, 2302.
[7]
(c) Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.
[7]
(d) Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675.
[7]
(e) Huang, L.; Arndt, M.; Gooßen, K.; Heydt, H. H.; Gooßen, L. J. Chem. Rev. 2015, 115, 2596.
[7]
(f) Wu, Z. Y.; Hu, M.; Li, J. X.; Wu, W. Q.; Jiang, H. F. Org. Biomol. Chem. 2021, 19, 3036.
[7]
(g) Streiff, S.; Jérôme, F. Chem. Soc. Rev. 2021, 50, 1512.
[8]
(a) Carroll, A.; O’Sullivan, T. P.; Guiry, P. J. Adv. Synth. Catal. 2005, 347, 609.
[8]
(b) Beletskaya, I.; Pelter, A. Tetrahedron 1997, 53, 4957.
[8]
(c) Burgess, K.; Ohlmeyer, M. J. Chem. Rev. 1991, 91, 1179.
[8]
(d) Vogels, C. M.; Westcott, S. A. Curr. Org. Chem. 2005, 9, 687.
[8]
(e) Chen, J.; Lu, Z. Org. Chem. Front. 2018, 5, 260.
[8]
(f) Chen, J.; Guo, J.; Lu, Z. Chin. J. Chem. 2018, 36, 1075.
[8]
(g) Wen, H.; Liu, G.; Huang, Z. Coord. Chem. Rev. 2019, 386, 138.
[8]
(h) Wei, D.; Darcel, C. Chem. Rev. 2019, 119, 2550.
[8]
(i) Obligacion, J. V.; Chirik, P. J. Nat. Rev. Chem. 2018, 2, 15.
[8]
(j) Fan, W. W.; Li, L.; Zhang, G. Q. J. Org. Chem. 2019, 84, 5987.
[8]
(k) Wang, X. J.; Wang, Y.; Huang, W.; Xia, C. G.; Wu, L. P. ACS Catal. 2021, 11, 1.
[9]
Zhou, C.; Mao, W. X. Chem. Ind. Eng. Prog. 2009, 28, 1313. (in Chinese)
[9]
(周丛, 茅文星, 化工进展, 2009, 28, 1313.)
[10]
(a) Larionov, E.; Li, H.; Mazet, C. Chem. Commun. 2014, 50, 9816.
[10]
(b) Liu, X. F.; Li, B.; Liu, Q. Synthesis 2019, 51, 1293.
[11]
(a) Casey, C. P.; Cyr, C. R. J. Am. Chem. Soc. 1973, 95, 2248.
[11]
(b) Tooley, P. A.; Arndt, L. W.; Darensbourg, M. Y. J. Am. Chem. Soc. 1985, 107, 2422.
[11]
(c) Reddy, M. R.; Periasamy, M. J. Organomet. Chem. 1995, 491, 263.
[11]
(d) Crivello, J. V.; Kong, S. Q. J. Org. Chem. 1998, 63, 6745.
[11]
(e) De Pasquale, R. J. Synth. Commun. 2006, 10, 225.
[11]
(f) Jennerjahn, R.; Jackstell, R.; Piras, I.; Franke, R.; Jiao, H.; Bauer, M.; Beller, M. ChemSusChem 2012, 5, 734.
[11]
(g) Yu, X.; Zhao, H.; Li, P.; Koh, M. J. J. Am. Chem. Soc. 2020, 142, 18223.
[12]
(a) Karapinka, G. L.; Orchin, M. J. Org. Chem. 1961, 26, 4187.
[12]
(b) Roos, L.; Orchin, M. J. Am. Chem. Soc. 1965, 87, 5502.
[12]
(c) Mc Cormack, W. E.; Orchin, M. J. Organomet. Chem. 1977, 129, 127.
[12]
(d) Onishi, M.; Oishi, S.; Sakaguchi, M. Takaki, I.; Hiraki, K. Bull. Chem. Soc. Jpn. 1986, 59, 3925.
[12]
(e) Onishi, M.; Hiraki, K.; Ishida, Y.; Dakeshita, K. Chem. Lett. 1986, 15, 333.
[12]
(f) Satyanarayana, N.; Periasamy, M. J. Organomet. Chem. 1987, 319, 113.
[12]
(g) Kobayashi, T.; Yorimitsu, H.; Oshima, K. Asian J. Org. Chem. 2009, 4, 1078.
[12]
(h) Punner, F.; Schmidt, A.; Hilt, G. Angew. Chem., nt. Ed. 2012, 51, 1270.
[12]
(i) Schmidt, A.; Hilt, G. Asian J. Org. Chem. 2014, 9, 2407.
[12]
(j) Chen, C.; Dugan, T. R.; Brennessel, W. W.; Weix, D. J.; Holland, P. L. J. Am. Chem. Soc. 2014, 136, 945.
[12]
(k) Crossley, S. W.; Barabe, F.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 16788.
[12]
(l) Schmidt, A.; Nodling, A. R.; Hilt, G. Angew. Chem., nt. Ed. 2015, 54, 801.
[12]
(m) Li, G.; Kuo, J. L.; Han, A.; Abuyuan, J. M.; Young, L. C.; Norton, J. R.; Palmer, J. H. J. Am. Chem. Soc. 2016, 138, 7698.
[12]
(n) Liu, X.; Zhang, W.; Wang, Y.; Zhang, Z.-X.; Jiao, L.; Liu, Q. J. Am. Chem. Soc. 2018, 140, 6873.
[12]
(o) Meng, Q.-Y.; Schirmer, T. E.; Katou, K.; König, B. Angew. Chem., nt. Ed. 2019, 58, 5723.
[12]
(p) Ai, W.; Zhong, R.; Liu, X.; Liu, Q. Chem. Rev. 2019, 119, 2876.
[13]
(a) Kanai, H. J. Chem. Soc., hem. Commun. 1972, 203.
[13]
(b) Tolman, A. C. J. Am. Chem. Soc. 1972, 94, 2994.
[13]
(c) Kanai, H.; Kushi, K.; Sakanoue, K.; Kishimoto, N. Bull. Chem. Soc. Jpn. 1980, 53, 2711.
[13]
(d) Bontempelli, G.; Daniele, S.; Schiavon, G.; Fiorani, M. Transition Met. Chem. 1987, 12, 292.
[13]
(e) Bontempelli, G.; Fiorani, M.; Daniele, S.; Schiavon, G. J. Mol. Catal. A: Chem. 1987, 40, 9.
[13]
(f) Bricout, H.; Mortreux, A.; Monflier, E. J. Organomet. Chem. 1998, 553, 469.
[13]
(g) Wille, A.; Tomm, S.; Frauenrath, H. Synthesis 1998, 305.
[13]
(h) Lochow, C. F.; Miller, R. G. J. Org. Chem. 1976, 41, 3020.
[13]
(i) D’Aniello, M. J., Jr; Barefield, E. K. J. Am. Chem. Soc. 2002, 100, 1474.
[13]
(j) Zhang, J.; Gao, H.; Ke, Z.; Bao, F.; Zhu, F.; Wu, Q. J. Mol. Catal. A: Chem. 2005, 231, 27.
[13]
(k) Wang, L.; Liu, C.; Bai, R.; Pan, Y.; Lei, A. Chem. Commun. 2013, 49, 7923.
[13]
(l) Weber, F.; Schmidt, A.; Röse, P.; Fischer, M.; Burghaus, O.; Hilt, G. Org. Lett. 2015, 17, 2952.
[13]
(m) Halli, J.; Kramer, P.; Bechthold, M.; Manolikakes, G. Adv. Synth. Catal. 2015, 357, 3321.
[13]
(n) Kapat, A.; Sperger, T.; Guven, S.; Schoenebeck, F. Science 2019, 363, 391.
[14]
(a) Hudson, B.; Taylor, P. C.; Webster, D. E.; Wells, P. B. Discuss. Faraday Soc. 1968, 46, 37.
[14]
(b) McGrath, D. V.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1991, 113, 3611.
[14]
(c) Wakamatsu, H.; Nishida, M.; Adachi, N.; Mori, M. J. Org. Chem. 2000, 65, 3966.
[14]
(d) Hu, Y.-J.; Dominique, R.; Das, S. K.; Roy, R. Can. J. Chem. 2000, 78, 838.
[14]
(e) Krompiec, S.; Pigulla, M.; Szczepankiewicz, W.; Bieg, T.; Kuznik, N.; Leszczynska-Sejda, K.; Kubicki, M.; Borowiak, T. Tetrahedron Lett. 2001, 42, 7095.
[14]
(f) Arisawa, M.; Terada, Y.; Nakagawa, M.; Nishida, A. Angew. Chem.,Int. Ed. 2002, 41, 4732.
[14]
(g) Arisawa, M.; Terada, Y.; Takahashi, K.; Nakagawa, M.; Nishida, A. J. Org. Chem. 2006, 71, 4255.
[14]
(h) Hanessian, S.; Giroux, S.; Larsson, A. Org. Lett. 2006, 8, 5481.
[14]
(i) Sharma, S. K.; Srivastava, V. K.; Jasra, R. V. J. Mol. Catal. A: Chem. 2006, 245, 200.
[14]
(j) Grotjahn, D. B.; Larsen, C. R.; Gustafson, J. L.; Nair, R.; Sharma, A. J. Am. Chem. Soc. 2007, 129, 9592.
[14]
(k) Larsen, C. R.; Grotjahn, D. B. J. Am. Chem. Soc. 2012, 134, 10357.
[14]
(l) Larsen, C. R.; Erdogan, G.; Grotjahn, D. B. J. Am. Chem. Soc. 2014, 136, 1226.
[14]
(m) Paulson, E. R.; Moore, C. E.; Rheingold, A. L.; Pullman, D. P.; Sindewald, R. W.; Cooksy, A. L.; Grotjahn, D. B. ACS Catal. 2019, 9, 7217.
[15]
(a) K. Stille, J.; Becker, Y J. Org. Chem. 1980, 45, 2139.
[15]
(b) Sasson, Y.; Zoran, A.; Blum, J. J. Mol. Catal. 1981, 11, 293.
[15]
(c) Tani, K.; Yamagata, T.; Akutagawa, S.; Kumobayashi, H.; Taketomi, T.; Takaya, H.; Miyashita, A.; Noyori, R.; Otsuka, S. J. Am. Chem. Soc. 1984, 106, 5208.
[15]
(d) Bergens, S. H.; Bosnich, B. J. Am. Chem. Soc. 1991, 113, 958.
[15]
(e) Alphonse, F. A.; Yudin, A. K. J. Am. Chem. Soc. 2006, 128, 11754.
[15]
(f) Tsang, D. S.; Yang, S.; Alphonse, F.-A.; Yudin, A. K. Chem.-Eur. J. 2008, 14, 886.
[15]
(g) Zhuo, L. G.; Yao, Z. K.; Yu, Z. X. Org. Lett. 2013, 15, 4634.
[15]
(h) Yip, S. Y. Y.; Aïssa, C. Angew. Chem., nt. Ed. 2015, 54, 6870.
[16]
(a) Baudry, D.; Ephritikhine, M.; Felkin, H. J. Chem. Soc., hem. Commun. 1978, 694.
[16]
(b) Yamamoto, Y.; Miyairi, T.; Ohmura, T.; Miyaura, N. J. Org. Chem. 1999, 64, 296.
[16]
(c) Yamamoto, R.; Fujikawa, N.; Miyaura, N. Synth. Commun. 2000, 30, 2383.
[16]
(d) Baxendale, I. R.; Lee, A. L.; Ley, S. V. J. Chem. Soc., erkin Trans. 1. 2002, 1850.
[16]
(e) Neugnot, B.; Cintrat, J. C. Rousseau, B. Tetrahedron 2004, 60, 3575.
[16]
(f) Chianese, A. R.; Shaner, S. E.; Tendler, J. A.; Pudalov, D. M.; Shopov, D. Y.; Kim, D.; Rogers, S. L.; Mo, A. Organometallics 2012, 31, 7359.
[16]
(g) Knapp, S. M. M.; Shaner, S. E.; Kim, D.; Shopov, D. Y.; Tendler, J. A.; Pudalov, D. M.; Chianese, A. R. Organometallics 2014, 33, 473.
[16]
(h) Wang, Y.; Qin, C.; Jia, X.; Leng, X.; Huang, Z. Angew. Chem., nt. Ed. 2017, 56, 1614.
[17]
(a) Smidt, J.; Hafner, W.; Jira, R.; Sedlmeier, J.; Sieber, R.; R€uttinger, R.; Kojer, H. Angew. Chem. 1959, 71, 176.
[17]
(b) Smidt, J.; Hafner, W.; Jira, R.; Sieber, R.; Sedlmeier, J.; Sabel, A. Angew. Chem.,Int. Ed. 1962, 1, 80.
[17]
(c) Jira, R. Angew. Chem., nt. Ed. 2009, 48, 9034.
[18]
Matsuura, R.; Karunananda, M. K.; Liu, M.; Nguyen, N.; Blackmond, D. G.; Engle, K. M. ACS Catal. 2021, 11, 4239.
[19]
Harrod, J. F.; Chalk, A. J. J. Am. Chem. Soc. 1964, 86, 1776.
[20]
Cramer, R.; Lindsey, R. V. J. Am. Chem. Soc. 1966, 88, 3534.
[21]
(a) Cruikshank, B.; Davies, N. R. Aust. J. Chem. 1966, 19, 815.
[21]
(b) Davies, N. R.; Dimichiel, A. D.; Pickle, V. A. Aust. J. Chem. 1968, 21, 385.
[21]
(c) Cruikshank, B.; Davies, N. R. Aust J. Chem. 1973, 26, 1935.
[22]
(a) Sen, A.; Lai, T. W. Inorg. Chem. 1981, 20, 4036.
[22]
(b) Sen, A.; Lai, T. W. Inorg. Chem. 1984, 23, 3257.
[23]
(a) Davies, N. R. Aust. J. Chem. 1964, 17, 212.
[23]
(b) Davies, N. R. Nature 1964, 201, 490.
[24]
Harrod, J. F.; Chalk, A. J. J. Am. Chem. Soc. 1966, 88, 3491.
[25]
Bingham, D.; Hudson, B.; Webster, D. E.; Wells, P. B. J. Chem. Soc., alton Trans. 1974, 1521.
[26]
Fan, J. M.; Wan, C. F.; Wang, Q.; Gao, L. F.; Zheng, X. Q.; Wang, Z. Y. Org. Biomol. Chem. 2009, 7, 3168.
[27]
Ullah, A.; Zhang, S.; Bao, M. Chin. J. Org. Chem. 2017, 37, 1278.
[28]
Harrod, J. F.; Chalk, A. J. Nature 1965, 205, 280.
[29]
Canovese, L.; Santo, C.; Visentin, F. Organometallics 2008, 27, 3577.
[30]
Tan, E. H. P.; Lloyd-Jones, G. C.; Harvey, J. N.; Lennox, A. J. J.; Mills, B. M. Angew. Chem.,Int. Ed. 2011, 50, 9602.
[31]
Giles, R. G. F.; Son, V. R. L.; Sargent, M. V. Aust. J. Chem. 1990, 43, 777.
[32]
Yu, J.; Gaunt, M. J.; Spencer, J. B. J. Org. Chem. 2002, 67, 4627.
[33]
Kim, I. S.; Zee, O. P.; Jung, Y. H. Org. Lett. 2006, 8, 4101.
[34]
Kim, I. S.; Dong, G. R.; Jung, Y. H. J. Org. Chem. 2007, 72, 5424.
[35]
Gauthier, D.; Lindhardt, A. T.; Olsen, E. P. K.; Overgaard, J.; Skrydstrup, T. J. Am. Chem. Soc. 2010, 132, 7998.
[36]
(a) Bai, X. F.; Xu, L. W.; Zheng, L. S.; Jiang, J. X.; Lai, G. Q.; Shang, J. Y. Chem.-Eur. J. 2012, 18, 8174.
[36]
(b) Xu, L. W.; Chen, X. H.; Shen, H.; Deng, Y.; Jiang, J. X.; Jiang, K. Z.; Lai, G. Q.; Sheng, C. Q. Eur. J. Org. Chem. 2012, 290.
[37]
Ohmura, T.; Oshima, K.; Suginome, M. Chem. Commun. 2008, 1416.
[38]
Albéniz, A. C.; Espinet, P.; Lin, Y. S. Organometallics 1996, 15, 5010.
[39]
Mirza-Aghayan, M.; Boukherroub, R.; Bolourtchian, M.; Ho-seini, M.; Tabar-Hydar, K. J. Organomet. Chem. 2003, 678, 1.
[40]
(a) Tkach, V. S.; Suslov, D. S.; Gomboogiin, M.; Ratovskii, G. V.; Shmidt, F. K. Russ. J. Appl. Chem. (Engl. Transl.) 2006, 79, 85.
[40]
(b) Gomboo, M.; Tkach, V. S.; Shmidt, F. K. React. Kinet. Catal. Lett. 2004, 83, 337.
[41]
Nishiwaki, N.; Kamimura, R.; Shono, K.; Kawakami, T.; Na-kayama, K.; Nishino, K.; Nakayama, T.; Takahashi, K.; Nakamura, A.; Hosokawa, T. Tetrahedron Lett. 2010, 51, 3590.
[42]
Jung, M. E.; Lee, G. S.; Pham, H. V.; Houk, K. N. Org. Lett. 2014, 16, 2382.
[43]
Chuc, L. T. N.; Chen, C. S.; Lo, W. S.; Shen, P.-C.; Hsuan, Y. C.; Gavin Tsai, H. H.; Shieh, F. K.; Hou, D. R. ACS Omega 2017, 2, 698.
[44]
Murai, M.; Nishimura, K.; Takai, K. Chem. Commun. 2019, 55, 2769.
[45]
Spallek, M. J.; Stockinger, S.; Goddard, R.; Trapp, O. Adv. Synth. Catal. 2012, 354, 1466.
[46]
Winston, M. S.; Oblad, P. F.; Labinger, J. A.; Bercaw, J. E. Angew. Chem., nt. Ed. 2012, 51, 9822.
[47]
Kocen, A. L.; Klimovica, K.; Brookhart, M.; Daugulis, O. Organometallics 2017, 36, 787.
[48]
Kocen, A. L.; Brookhart, M.; Daugulis, O. Chem. Commun. 2017, 53, 10010.
[49]
Yamasaki, Y.; Kumagai, T.; Kanno, S.; Kakiuchi, F.; Kochi, T. J. Org. Chem. 2018, 83, 9322.
[50]
Portnoy, M.; Milstein, D. Organometallics 1994, 13, 600.
[51]
Perez, P. J.; Calabrese, J. C.; Bunel, E. E. Organometallics 2001, 20, 337.
[52]
Sui-Seng, C.; Groux, L. F.; Zargarian, D. Organometallics 2006, 25, 571.
[53]
RajanBabu, T. V. Chem. Rev. 2003, 103, 2845.
[54]
Lim, H. J.; Smith, C. R.; RajanBabu, T. V. J. Org. Chem. 2009, 74, 4565.
[55]
(a) Barrios-Landeros, F.; Carrow, B. P.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 5842.
[55]
(b) Mamone, P.; Grünberg, M. F.; Fromm, A.; Khan, B. A.; Gooßen, L. J. Org. Lett. 2012, 14, 3716.
[55]
(c) Ohlmann, D. M.; Tschauder, N.; Stockis, J.-P.; Gooßen, K.; Dierker, M.; Gooßen, L. J. J. Am. Chem. Soc. 2012, 134, 13716.
[56]
Bai, X.-F.; Song, T.; Deng, W.-H.; Wei, Y.-L.; Li, L.; Xia, C.-G.; Xu, L.-W. Synlett 2014, 25, 417.
[57]
Ahn, H.; Son, I.; Lee, J.; Lim, H. J. Asian J. Org. Chem. 2017, 6, 335.
[58]
Ojha, D. P.; Gadde, K.; Prabhu, K. R. J. Org. Chem. 2017, 82, 4859.
[59]
Ren, W. L.; Sun, F.; Chu, J. X.; Shi, Y. A. Org. Lett. 2020, 22, 1868.
[60]
Ohmura, T.; Oshima, K.; Suginome, M. Angew. Chem., nt. Ed. 2011, 50, 12501.
[61]
Danishefsky, S.; O’Neill, B. T.; Taniyama, E.; Vaughan, K. Tetrahedron Lett. 1984, 25, 4199.
[62]
Schuppe, A. W.; Newhouse, T. R. J. Am. Chem. Soc. 2017, 139, 631.
[63]
Sánchez-Eleuterio, A.; Mastranzo, V. M.; Quintero, L.; Sartillo- Piscil, F. Lett. Org. Chem. 2017, 14, 261.
[64]
Sasaki, M.; Maruyama, T.; Sakai, R.; Tachibana, K. Tetrahedron Lett. 1999, 40, 3195.
[65]
(a) Campbell, A. D.; Tomasi, S.; Tiberghien, A. C.; Parker, J. S. Org. Process Res. Dev. 2019, 23, 2543.
[65]
(b) Tiberghien, A. C.; Levy, J.-N.; Masterson, L. A.; Patel, N. V.; Adams, L. R.; Corbett, S.; Williams, D. G.; Hartley, J. A.; Howard, P. W. ACS Med. Chem. Lett. 2016, 7, 983.
文章导航

/