综述与进展

2-苯并呋喃-1(3H)-酮的合成研究进展

  • 龚婷婷 ,
  • 陈智斌 ,
  • 刘妙昌 ,
  • 成江
展开
  • 温州大学化学与材料工程学院 浙江温州 325035

收稿日期: 2021-09-03

  修回日期: 2021-11-07

  网络出版日期: 2021-11-25

基金资助

国家自然科学基金(21971025); 浙江省自然科学基金(LY21B020001)

Recent Progress in the Synthesis of 2-Benzofuran-1(3H)-one

  • Tingting Gong ,
  • Zhibin Chen ,
  • Miaochang Liu ,
  • Jiang Cheng
Expand
  • School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035

Received date: 2021-09-03

  Revised date: 2021-11-07

  Online published: 2021-11-25

Supported by

National Natural Science Foundation of China(21971025); Natural Science Foundation of Zhejiang Province(LY21B020001)

摘要

2-苯并呋喃-1(3H)-酮(异苯并呋喃酮)是合成多种环状化合物的前体, 许多天然产物中含有异苯并呋喃酮结构. 由于其广泛的生物活性, 及其在药学方面的广泛应用, 该类化合物的制备引起了极大关注. 将从过渡金属催化合成、 酸碱催化合成以及其它合成方法等三方面总结了我们及其他课题组近十年在合成异苯并呋喃酮方面的工作.

本文引用格式

龚婷婷 , 陈智斌 , 刘妙昌 , 成江 . 2-苯并呋喃-1(3H)-酮的合成研究进展[J]. 有机化学, 2022 , 42(4) : 1085 -1100 . DOI: 10.6023/cjoc202109006

Abstract

2-Benzofuran-1(3H)-ones (isobenzofuranons) are multi-function precursors toward a variety of cyclic compounds as isobenzofuranon structure is ubiquitous in many natural products. Due to its extensive biological activity and wide application in medicinal chemistry, the preparation of these compounds has attracted great attention. In this paper, our and other research groups' work on the synthesis of isobenzofuranone in recent ten years from three aspects of transition metal catalytic synthesis, acid-base catalytic synthesis and other synthesis methods is summarized.

参考文献

[1]
Karmakar, R.; Pahari, P.; Mal, D. Chem. Rev. 2014, 114, 6213.
[2]
Ray, S.-K.; Sadhu, M.-M.; Biswas, R.-G.; Unhale, R.-A.; Singh, V.-K. Org. Lett. 2019, 21, 417.
[3]
Pan, Y.-L.; Zheng, H.-L.; Wang, J.; Yang, C.; Li, X.; Cheng, J.-P. ACS Catal. 2020, 10, 8069
[4]
Huang, L.-J.; Wang, S.; Ma, F.; Zhang, Y.; Peng, Y.-C.; Xing, C.-H.; Feng, Y.-P.; Wang, X.-L.; Peng, Y. Pharmacol. Res. 2018, 135, 201.
[5]
Huang, X.-Z.; Yun, Z.; Guan, X.-L.; Kai, T.; Guo, J.-M.; Wang, H.-B.; Fu, G.-M. Molecules 2012, 17, 4219.
[6]
Lan, W.-J.; Liu, W.; Liang, W.-L.; Xu, Z.; Le, X.; Xu, J.; Lam, C.-K.; Wang, L.-Y. Mar. Drugs 2014, 12, 4188.
[7]
Yue, J.-M.; Xu, J.; Zhao, Y.; Sun, H.-D.; Lin, Z.-W. J. Nat. Prod. 1997, 60, 1031.
[8]
Rahman, M.-M.; Gray, A.-I. Phytochemistry 2005, 66, 1601.
[9]
Ma, F.-F.; Yuan, G.; Qiao, H.-L.; Hu, X.-J.; Chang, J.-B. J. Thromb. Thrombolysis 2012, 33, 64.
[10]
Tanaka, K.; Nishida, G.; Wada, A.; Noguchi, K. Angew. Chem., Int. Ed. 2004, 43, 6510.
[11]
Kitamura, M.; Ohkuma, T.; Inoue, S.; Sayo, N.; Kumobayashi, H. J. Am. Chem. Soc. 1988, 110, 629.
[12]
Phan, D.-H.-T.; Kim, B.; Dong, V.-M. J. Am. Chem. Soc. 2009, 131, 15608.
[13]
Zhang, B.; Xu, M.-H.; Lin, G.-Q. Org. Lett. 2009, 11, 4712.
[14]
Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
[15]
Ye, Z.; Lü, G.; Wang, W.; Zhang, M.; Cheng, J. Angew. Chem., Int. Ed. 2010, 49, 3671.
[16]
Wei, Y.; Hu, P.; Zhang, M.; Su, W.-P. Chem. Rev. 2017, 117, 8864.
[17]
Renzetti, A.; Nakazawa, H.; Li, C.-J. RSC Adv. 2016, 6, 40626.
[18]
Zhu, Y.-Q.; Li, J.-X.; Han, T.-F.; He, J.-L.; Zhu, K. Eur. J. Org. Chem. 2017, 2017, 806.
[19]
Danoun, G.; Mamone, P.; Gooßen, L.-J. Chem.-Eur. J. 2013, 19, 17287.
[20]
Liu, Y.; Yang, Y.-D.; Shi, Y.; Wang, X.-J.; Zhang, L.-Q.; Cheng, Y.-Y.; You, J.-S. Organometallics 2016, 35, 1350.
[21]
Han, W.-J.; Pu, F.; Fan, J.; Liu, Z.-W.; Shi, X.-Y. Adv. Synth. Catal. 2017, 359, 3520.
[22]
Qiu, Y.; Kong, W.-J.; Struwe, J.; Sauermann, N.; Rogge, T.; Scheremetjew, A.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 5828.
[23]
Lin, S.-H.; Lu, X.-Y. J. Org. Chem. 2007, 72, 9757.
[24]
Yamamoto, T.; Ohta, T.; Ito, Y. Org. Lett. 2005, 7, 4153.
[25]
Ye, Z.-S.; Qian, P.-C.; Lü, G.-L.; Luo, F.; Cheng, J. J. Org. Chem. 2010, 75, 6043.
[26]
Luo, F.; Pan, S.; Pan, C.-D.; Qian, P.-C.; Cheng, J. Adv. Synth. Catal. 2011, 353, 320.
[27]
Lin, H.; Sun, X.-W. Tetrahedron Lett. 2008, 49, 5343.
[28]
Yuan, S.; Zhang, D.-Q.; Zhang, J.-Y.; Yu, B.; Liu, H.-M. Org. Lett. 2020, 22, 814.
[29]
Chuc, L.-T.-N.; Nguyen, T.-A.-H.; Hou, D.-R. Org. Biomol. Chem. 2020, 18, 2758.
[30]
Liang, X.; Xiong, M.-T.; Zhu, H.-P.; Shi, K.-Q.; Zhou, Y.-F.; Pan, Y.-J. Org. Lett. 2020, 22, 9568.
[31]
Nandi, D.; Ghosh, D.; Chen, S.-J.; Kuo, B.-C.; Lee, H.-M. J. Org. Chem. 2013, 78, 3445.
[32]
Shi, S.; Chen, C.-H.; Chai, Y.; Zhang, L.-T.; Li, J.-W.; Liu, B.; Liu, Y.-J.; Zeng, M.-H. J. Org. Chem. 2019, 84, 9161.
[33]
Fan, J.; Wang, P.-M.; Wang, J.-N.; Zhao, X.; Liu, Z.-W.; Wei, J.-F.; Shi, X.-Y. Sci. China Chem. 2018, 61, 153.
[34]
Fardpour, M.; Darvish, A.; Kianmehr, E.; Kharat, A.-N. Tetrahedron Lett. 2018, 60, 699.
[35]
Ackermann, L.; Pospech, J. Org. Lett. 2011, 13, 4153.
[36]
Miura, H.; Tsutsui, K.; Wada, K.; Shishido, T. Chem. Commun. 2015, 51, 1654.
[37]
Yang, Y.; Rioux, R.-M. Chem. Commun. 2011, 47, 6557.
[38]
Zhao, H.; Zhang, T.; Yan, T.; Cai, M.-Z. J. Org. Chem. 2015, 80, 8849.
[39]
Bechtoldt, A.; Baumert, M.-E.; Vaccaro, L.; Ackermann, L. Green Chem. 2018, 20, 398.
[40]
Dana, S.; Dey, P.; Patil, S.-A.; Baidya, M. Chem.-Asian J. 2020, 15, 564.
[41]
Mandal, A.; Garai, B.; Dana, S.; Bera, R.; Baidya, M. Chem.-Asian J. 2020, 15, 4009.
[42]
Cabrera, J.-M.; Tauber, J.; Krische, M.-J. Angew. Chem., Int. Ed. 2018, 57, 1390.
[43]
Qiu, Y.; Stangier, M.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 14179.
[44]
Xiong, Y.-S.; Zhang, B.; Yu, Y.; Weng, J.; Lu, G. J. Org. Chem. 2019, 84, 13465.
[45]
Domínguez, G.; Pérez-Castells, J. Chem. Soc. Rev. 2011, 40, 3430.
[46]
Amatore, M.; Aubert, C. Eur. J. Org. Chem. 2015, 2015, 265.
[47]
Lledó, A.; Pla-Quintana, A.; Roglans, A. Chem. Soc. Rev. 2016, 45, 2010.
[48]
Méndez-Gálvez, C.; Böhme, M.; Leino, R.; Savela, R. Eur. J. Org. Chem. 2020, 2020, 1708.
[49]
Gandhi, S.; Baire, B. Adv. Synth. Catal. 2020, 362, 2651.
[50]
Jia, B.; Yang, Y.-H.; Jin, X.-Q.; Mao, G.-L.; Wang, C.-Y. Org. Lett. 2019, 21, 6259.
[51]
Maia, A.; Siqueira, R.-P.; Oliveira, F.; Ferreira, J.-G.; Teixeira, R.-R. Bioorg. Med. Chem. Lett. 2016, 26, 2810.
[52]
Mola, A.-D.; Filosa, R.; Massa, A. Molbank 2020, 2020, M1124.
[53]
Singha, M.; Maji, M.; Gupta, M.; Majhi, S.; Basak, A. Tetrahedron Lett. 2019, 60, 945.
[54]
Limaye, R.-A.; Kumbhar, V.-B.; Natu, A.-D.; Paradkar, M.-V.; Honmore, V.-S.; Chauhan, R.-R.; Gample, S.-P.; Sarkar, D. Bioorg. Med. Chem. Lett. 2013, 23, 711.
[55]
Li, J.; Chin, E.; Lui, A.-S.; Chen, L.-J. Tetrahedron Lett. 2010, 51, 5937.
[56]
Yang, X.-Y.; Xu, X.-Q.; Wang, X.-K.; Zheng, Z.-B.; Zhao, G.-M.; Li, S. Synth. Commun 2014, 44, 1780.
[57]
Fan, L.-L.; Luo, B.-L.; Luo, Z.-F.; Zhang, L.; Fan, J.-D.; Xue, W.; Tang, L.; Li, Y. Z. Naturforsch., B 2019, 74, 811.
[58]
Guo, T.; Wang, H.-J.; Cao, C.-C.; Chen, K.-H.; Liu, Y.; Zhang, P.-K.; Zhao, Y.-H.; Ma, Y.-C. Eur. J. Org. Chem. 2020, 24, 3613.
[59]
Du, Z.-H.; Xu, Q.-J.; Gu, G.-X. J. Saudi Chem. Soc. 2020, 24, 545.
[60]
Nakamura, Y.; Yoshida, S.; Hosoya, T. Chem. Lett. 2017, 46, 858.
文章导航

/