自由基介导含氟杂环化合物的构建研究
收稿日期: 2021-09-22
修回日期: 2021-11-12
网络出版日期: 2021-11-25
基金资助
国家自然科学基金(21801007); 哈尔滨商业大学“青年创新人才”(2019CX09); 黑龙江省博士后基金(LBH-Q20103); 哈尔滨商业大学博士科研基金(2019DS112)
Construction of Fluoro-containing Heterocycles Mediated by Free Radicals
Received date: 2021-09-22
Revised date: 2021-11-12
Online published: 2021-11-25
Supported by
National Natural Science Foundation of China(21801007); “Young Innovative Talents” of Harbin University of Commerce(2019CX09); Heilongjiang Postdoctoral Fund(LBH-Q20103); Harbin University of Commerce Doctoral Research Foundation(2019DS112)
含氟杂环化合物由于其优异的物理化学性质, 在有机化学、药物化学、材料科学等诸多领域扮演着重要的角色. 但自然界中, 天然含氟杂环化合物屈指可数, 开发高效的含氟杂环化合物的合成方法显得尤为重要. 随着过渡金属催化、光催化以及电催化自由基反应的迅速发展, 自由基化学在合成领域取得了突破性进展, 激发了有机化学家利用自由基化学构建含氟杂环的兴趣. 主要以不饱和烃的单氟烷基化、二氟烷基化、三氟甲基化、三氟烷氧/硫/硒基化、全氟烷基化以及杂环的直接C—H氟烷基化进行分类, 从过渡金属催化、光催化以及电催化等几个方面, 对自由基介导的含氟侧链杂环化合物的构建进行讨论.
陈宁 , 雷佳 , 王智传 , 刘颖杰 , 孙凯 , 唐石 . 自由基介导含氟杂环化合物的构建研究[J]. 有机化学, 2022 , 42(4) : 1061 -1084 . DOI: 10.6023/cjoc202109033
Fluoro-containing heterocyclics play an important role in many fields, such as organic chemistry, pharmaceutical chemistry and material science due to their excellent physical and chemical properties. However, there are few natural fluoro-containing heterocyclics in nature, so it is particularly important to develop efficient synthesis methods of fluoro- containing heterocyclics. With the rapid development of transition metal catalyzed, photocatalyzed and electrocatalyzed radical reactions, radical chemistry has made a breakthrough in the field of synthesis and stimulated the interest of organic chemists in constructing fluoro-containing heterocyclics by using radical chemistry. In this paper, monofluoroalkylation, difluoroalkylation, trifluoromethylation, trifluoroalkoxy/sulfur/selenylation, perfluoroalkylation of unsaturated hydrocarbons and direct C—H fluoroalkylation of heterocycles are classified, and the construction of fluorine-containing side chain heterocycles mediated by free radicals is discussed from the aspects of transition metal catalysis, photocatalysis and electrocatalysis.
Key words: radical; fluorinated heterocycle; metal catalysis; photocatalytic; electrocatalysis
[1] | Schlosser, M. Angew. Chem., nt. Ed. 2006, 45, 5432. |
[2] | Liu, Y.-J.; Han, Y.-H.; Lin, L.-Q.; Xu, Y. Chin. J. Org. Chem. 2021, 41, 934. (in Chinese) |
[2] | ( 刘颖杰, 韩莹徽, 林立青, 许颖, 有机化学, 2021, 41, 934.) |
[3] | Chen, B.-Q.; Ge, D.-H.; Wang, X.; Chu, X.-Q. Chin. J. Org. Chem. 2021, 41, 1925. (in Chinese) |
[3] | ( 程步清, 葛丹华, 汪欣, 褚雪强, 有机化学, 2021, 41, 1925.) |
[4] | Wang, S.-W.; Yu, J.; Zhou, Q.-Y.; Chen, S.-Y.; Xu, Z.-Y.; Tang, S. ACS Sustainable Chem. Eng. 2019, 7, 10154. |
[5] | Tang, S.; Yuan, L.; Deng, Y.-L.; Li, Z.-Z.; Wang, L.-N.; Huang, G.-X.; Sheng, R.-L. Tetrahedron Lett. 2017, 58, 2127. |
[6] | Du, K.-Y.; Zhang, Z.-M.; Sheng, W.-J. Chin. J. Org. Chem. 2021, 41, 3242. (in Chinese) |
[6] | ( 杜科莹, 张展铭, 盛卫坚, 有机化学, 2021, 41, 3242.) |
[7] | Wang, X.; Lei, J.; Liu, Y.-J.; Ye, Y.; Li, J.-Z.; Sun, K. Org. Chem. Front. 2021, 8, 2079. |
[8] | Pan, J.; Wu, J.-J.; Wu, F.-H. Chin. J. Org. Chem. 2021, 41, 983. (in Chinese) |
[8] | ( 潘军, 吴晶晶, 吴范宏, 有机化学, 2021, 41, 983.) |
[9] | Zou, Z.-L.; Zhang, W.-G.; Wang, Y.; Pan, Y. Org. Chem. Front. 2021, 8, 2786. |
[10] | Tang, X.; Thomoson, C. S.; Dolbier Jr., W. R. Org. Lett. 2014, 16, 4594. |
[11] | Fu, W.-J.; Sun, Y.-N.; Li, X.-Y. Synth. Commun. 2020, 50, 388. |
[12] | Wang, J.-Y.; Su, Y.-M.; Yin, F.; Bao, Y.; Zhang, X.; Xu, Y.-M.; Wang, X.-S. Chem. Commun. 2014, 50, 4108. |
[13] | Wang, Y.-Q.; He, Y.-T.; Zhang, L.-L.; Wu, X.-X.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2015, 17, 4280. |
[14] | Hua, H.-L.; Zhang, B.-S.; He, Y.-T.; Qiu, Y.-F.; Hu, J.-Y.; Yang, Y.-C.; Liang, Y.-M. Chem. Commun. 2016, 52, 10396. |
[15] | Lv, Y.-H.; Pu, W.-Y.; Chen, Q.; Wang, Q.-Q.; Niu, J.-J.; Zhang, Q. J. Org. Chem. 2017, 82, 8282. |
[16] | Zhou, L.; Hossain, M.-L.; Xiao, T. Chem. Rec. 2016, 16, 319-334. |
[17] | Wang, X.-Y.; Li, M.; Yang, Y.-Y.; Guo, M.-J.; Tang, X.-Y.; Wang, G.-W. Adv. Synth. Catal. 2018, 360, 2151. |
[18] | Ma, J.-W.; Wang, Q.; Wang, X.-G.; Liang, Y.-M. J. Org. Chem. 2018, 83, 13296. |
[19] | Da, Y.; Han, S.-N.; Du, X.-Y.; Liu, S.-D.; Liu, L.; Li, J. Org. Lett. 2018, 20, 5149. |
[20] | Han, S.-N.; Liu, S.-D.; Ackermann, L.; Li, J. Org. Lett. 2019, 21, 5387. |
[21] | Zhang, P.-B.; Wang, C.; Cui, M.-C.; Du, M.-S.; Li, W.-W.; Jia, Z.-X.; Zhao, Q. Org. Lett. 2020, 22, 1149. |
[22] | Sun, K.; Wang, S.-N.; Feng, R.-R.; Zhang, Y.-X.; Wang, X.; Zhang, Z.-G.; Zhang, B. Org. Lett. 2019, 21, 2052. |
[23] | Lv, Y.-H.; Pu, W.-Y.; Wang, Q.-Q.; Chen, Q.; Niu, J.-J.; Zhang, Q. Adv. Synth. Catal. 2017, 359, 3114. |
[24] | Shen, Z.-J.; Wang, S.-C.; Hao, W.-J.; Yang, S.-Z.; Tu, S.-J.; Jiang, B. Adv. Synth. Catal. 2019, 361, 1. |
[25] | Zhu, S.-Q.; Yang, H.-B.; Jiang, A.-L.; Zhou, B.; Han, Y.; Yan, C.-G.; Shi, Y.-C.; Hou, H. J. Org. Chem. 2020, 85, 15667. |
[26] | Xiao, P.; Rong, J.; Ni, C.-F.; Guo, J.-K.; Li, X.-J.; Chen, D.-B.; Hu, J.-B. Org. Lett. 2016, 18, 5912. |
[27] | Li, M.; Wang, C.-T.; Qiu, Y.-F.; Zhu, X.-Y.; Han, Y.-P.; Xia, Y.; Li, X.-S.; Liang, Y.-M. Chem. Commun. 2018, 54, 5334. |
[28] | Fu, W.-J.; Zhu, M.; Zou, G.-L.; Xu, C.; Wang, Z.-Q.; Ji, B.-M. J. Org. Chem. 2015, 80, 4766. |
[29] | Zhang, M.-L.; Li, W.-P.; Duan, Y.-Q.; Xu, P.; Zhang, S.-L.; Zhu, C.-J. Org. Lett. 2016, 18, 3266. |
[30] | Yu, L.-C.; Gu, J.-W.; Zhang, S.; Zhang, X.-G. J. Org. Chem. 2017, 82, 3943. |
[31] | Wang, Q.; Qu, Y.; Xia, Q.; Song, H.-J.; Song, H.-B.; Liu, Y.-X.; Wang, Q.-M. Chem.-Eur. J. 2018, 24, 11283. |
[32] | Wang, Q.; Qu, Y.; Liu, Y.-X.; Song, H.-B.; Wang, Q.-M. Adv. Synth. Catal. 2019, 361, 4739. |
[33] | Zhou, N.-N.; Wu, M.-X.; Zhang, M.; Zhou, X.-Q. Asian J. Org. Chem. 2019, 8, 828. |
[34] | Chen, Y.-T.; Shu, C.-Y.; Luo, F.; Xiao, X.-H.; Zhu, H.-H. Chem. Commun. 2018, 54, 5373. |
[35] | Song, D.; Wang, C.-M.; Ye, Z.-P.; Xia, P.-J.; Deng, Z.-X.; Xiao, J.-A.; Xiang, H.-Y.; Yang, H. J. Org. Chem. 2019, 84, 7480. |
[36] | Sun, H.; Jiang, Y.; Yang, Y.-S.; Li, Y.-Y.; Li, L.; Wang, W.-X.; Feng, T.; Li, Z.-H.; Liu, J.-K. Org. Biomol. Chem. 2019, 17, 6629. |
[37] | Xiong, P.; Xu, H.-H.; Song, J.-S.; Xu, H.-C. J. Am. Chem. Soc. 2018, 140, 2460. |
[38] | Guo, J.-Y.; Wu, R.-X.; Jin, J.-K.; Tian, S.-K. Org. Lett. 2016, 18, 3850. |
[39] | Taniguchi, T.; Idota, A.; Ishibashi, H. Org. Biomol. Chem. 2011, 9, 3151. |
[40] | Zhang, S.; Li, L.-J.; Zhang, J.-J.; Zhang, J.-Q.; Xue, M.-Y.; Xu, K. Chem. Sci. 2019, 10, 3181. |
[41] | Yuan, X.; Cui, Y.-S.; Zhang, X.-P.; Qin, L.-Z.; Sun, Q.; Duan, X.; Chen, L.; Li, G.-G.; Qiu, J.-K.; Guo, K. Chem.-Eur. J. 2021, 27, 6522. |
[42] | Bhaskaran, R. P.; Babu, B. P. Adv. Synth. Catal. 2020, 362, 5219. |
[43] | Liu, K.; Chen, S.; Li, X.-G.; Liu, P.-N. J. Org. Chem. 2016, 81, 265. |
[44] | Meng, Q.; Chen, F.; Yu, W.; Han, B. Org. Lett. 2017, 19, 5186. |
[45] | Li, J.-J.; Lei, Y.-F.; Yu, Y.; Qin, C.; Fu, Y.-W.; Li, H.; Wang, W. Org. Lett. 2017, 19, 6052. |
[46] | Dong, J.-J.; Zhang, S.-L. Adv. Synth. Catal. 2020, 362, 795. |
[47] | Ge, J.-Y.; Ding, Q.-P.; Wang, X.-H.; Peng, Y.-Y. J. Org. Chem. 2020, 85, 7658. |
[48] | Zhou, X.; Huang, C.; Zeng, Y.; Xiong, J.; Xiao, Y.; Zhang, J. Chem. Commun. 2017, 53, 1084. |
[49] | Wang, L.; Studer, A. Org. Lett. 2017, 19, 5701. |
[50] | An, Y.-Y.; Kuang, Y.-Y.; Wu, J. Org. Chem. Front. 2016, 3, 994. |
[51] | Xiang, Y.-C.; Kuang, Y.-Y.; Wu, J. Org. Chem. Front. 2016, 3, 901. |
[52] | Han, H. S.; Oh, E. H.; Jung, Y. S.; Han, S. B. Org. Lett. 2018, 20, 1698. |
[53] | Yuan, X.; Zheng, M.-W.; Di, Z.-C.; Cui, Y.-S.; Zhuang, K.-Q.; Qin, L.-Z.; Fang, Z. Qiu, J.-K.; Li, G.-G.; Guo, K. Adv. Synth. Catal. 2019, 361, 1835. |
[54] | Wang, S.-W.; Dai, P.; Yan, Z.-C.; Wang, Y.-J.; Shao, J.-X.; Wu, Y.-H.; Deng, C.; Zhang, W.-H. ChemistrySelect 2019, 4, 10329. |
[55] | Qi, X.-K.; Zhang, H.; Pan, Z.-T.; Liang, R.-B.; Zhu, C.-M.; Li, J.-H.; Tong, Q.-X.; Gao, X.-W.; Wu, L.-Z.; Zhong, J.-J. Chem. Commun. 2019, 55, 10848. |
[56] | Zhuang, K.-Q.; Cui, Y.-S.; Yuan, X.; Qin, L.-Z.; Sun, Q.; Duan, X.; Chen, L.; Zhang, X.-P.; Qiu, J.-K.; Guo, K. ACS Sustainable Chem. Eng. 2020, 8, 11729. |
[57] | Guo, Y.-J.; Pei, C.; Jana, S.; Koenigs, R. M. ACS Catal. 2021, 11, 337. |
[58] | Ye, K.-Y.; Song, Z.-D.; Sauer, G. S.; Harenberg, J. H.; Fu, N.-K.; Lin, S. Chem.-Eur. J. 2018, 24, 12274. |
[59] | Jiang, Y.-Y.; Dou, G.-Y.; Xu, K.; Zeng, C.-C. Org. Chem. Front. 2018, 5, 2573. |
[60] | Zhang, Z.-X.; Zhang, L.; Cao, Y.; Li, F.; Bai, G.-C.; Liu, G.-Q.; Yang, Y.; Mo, F.-Y. Org. Lett. 2019, 21, 762. |
[61] | Claraz, A.; Courant, T.; Masson, G. Org. Lett. 2020, 22, 1580. |
[62] | Li, Z.; Jiao, L.-C.; Sun, Y.-H.; He, Z.-Y.; Wei, Z.-L.; Liao, W.-W. Angew. Chem., nt. Ed. 2020, 59, 7266. |
[63] | Lin, L.; Liang, Q.; Kong, X.-Q.; Chen, Q.-J.; Xu, B. J. Org. Chem. 2020, 85, 15708. |
[64] | Fuentes, N.; Kong, W.-Q.; Ferna?ndez-Sa?nchez, L.; Merino, E.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 964. |
[65] | Zheng, W.-J.; Morales-Rivera, C. A.; Lee, J. W.; Liu, P.; Ngai, M. Y. Angew. Chem., nt. Ed. 2018, 130, 9793. |
[66] | Zheng, W.-J.; Lee, J. W.; Morales-Rivera, C. A.; Liu, P.; Ngai, M. Y. Angew. Chem., nt. Ed. 2018, 57, 13795. |
[67] | Zhu, M.; Li, R.-X.; You, Q.-Q.; Fu, W.-J.; Guo, W.-S. Asian J. Org. Chem. 2019, 8, 2002. |
[68] | Zhu, M.; Fu, W.-J.; Guo, W.-S.; Tian, Y.-F.; wang, Z.-Q.; Ji, B.-M. Org. Biomol. Chem. 2019, 17, 3374. |
[69] | Guo, J.-C.; Hao, Y.-N.; Li.; Wang, Z.-W.; Liu, Y.-X.; Li, Y.-Q.; Wang, Q.-M. Org. Biomol. Chem. 2020, 18, 1994. |
[70] | Zordo-Banliat, A. D.; Barthélémy, L.; Bourdreux, F.; Tuccio, B.; Dagousset, G.; Pégot, B.; Magnier, E. Eur. J. Org. Chem. 2020, 2020, 506. |
[71] | Dix, S.; Golz, P.; Schmid, J. R.; Riedel, S.; Hopkinson, M. N. Chem.-Eur. J. 2021, 27, 11554. |
[72] | Tang, S.; Deng, Y.-L.; Li, J.; Wang, W.-X.; Ding, G.-L.; Wang, M.-W.; Xiao, Z.-P.; Wang, Y.-C.; Sheng, R.-L. J. Org. Chem. 2015, 80, 12599 |
[73] | Deng, Y.-L.; Tang, S.; Ding, G.-L.; Wang, M.-W.; Li, J.; Li, Z.-Z.; Yuan, L.; Sheng, R.-L. Org. Biomol. Chem. 2016, 14, 9348. |
[74] | Chu, X.-Q.; Xie, T.; Li, L.; Ge, D.-H.; Shen, Z.-L.; Loh, T. P. Org. Lett. 2018, 20, 2749. |
[75] | Xiong, H.-G.; Ramkumar, N.; Chiou, M.-F.; Jian, W.-J.; Li, Y.-J.; Su, J.-H.; Zhang, X.-H.; Bao, H.-L. Nat. Commun. 2019, 10, 1. |
[76] | Zeng, F.-L.; Sun, K.; Chen, X.-L.; Yuan, X.-Y.; He, S.-Q.; Liu, Y.; Peng, Y.-Y.; Qu, L.-B.; Lv, Q.-Y.; Yu, B. Adv. Synth. Catal. 2019, 361, 1. |
[77] | Chen, Y.-J.; Li, L.-K.; He, X.; Li, Z.-P. ACS Catal. 2019, 9, 9098. |
[78] | Fujiwara, Y.; Dixon, J. A.; Rodriguez, R. A.; Baxter, R. D.; Dixon, D. D.; Collins, M. R.; Blackmond, D. G.; Baran, P. S. J. Am. Chem. Soc. 2012, 134, 1494. |
[79] | O'Brien, A. G.; Maruyama, A.; Inokuma, Y.; Fujita, M.; Baran, P. S.; Blackmond, D. G. Angew. Chem., nt. Ed. 2014, 53, 1. |
[80] | Dou, G.-Y.; Jiang, Y.-Y.; Xu, K.; Zeng, C.-C. Org. Chem. Front. 2019, 6, 2392. |
[81] | Zhang, S.-K.; Nicolas, R. L.; Weniger, F.; Rabeah, J.; Neumann, H.; Taeschler, C.; Beller, M. Chem. Commun. 2019, 55, 6723. |
[82] | Qiu, Y.; Scheremetjew, A.; Finger, L. H.; Ackermann, L. Chem.- Eur. J. 2020, 26, 3241. |
[83] | Hossain, M. J.; Ono, T.; Wakiya, K.; Hisaeda, Y. Chem. Commun. 2017, 53, 10878. |
[84] | Rao, M.; Fan, Z.-W.; Yuan, Y.-F.; Cheng, J.-J. ChemCatChem 2020, 12, 5256. |
[85] | Rodrigo, S.; Um, C.; Mixdorf, J. C.; Gunasekera, D.; Nguyen, H. M.; Luo, L. Org. Lett. 2020, 22, 6719. |
[86] | Huang, J.-B.; Wu, D.-D.; Bai, X.-K.; Cai, P.-Y.; Zhu, W.-G. New J. Chem. 2021, 45, 4925. |
/
〈 |
|
〉 |