基于四配位硼的1,2-迁移反应研究进展
收稿日期: 2021-10-12
修回日期: 2021-11-15
网络出版日期: 2021-12-02
基金资助
国家自然科学基金(21772046); 国家自然科学基金(2193103)
Recent Progress on 1,2-Metallate Shift Reactions Based on Tetracoordinate Boron Intermediates
Received date: 2021-10-12
Revised date: 2021-11-15
Online published: 2021-12-02
Supported by
National Natural Science Foundation of China(21772046); National Natural Science Foundation of China(2193103)
张锋 , 周鹿 , 杨凯 , 宋秋玲 . 基于四配位硼的1,2-迁移反应研究进展[J]. 有机化学, 2022 , 42(4) : 1013 -1032 . DOI: 10.6023/cjoc202110017
Organoboron compounds are important and versatile synthetic building blocks in synthetic chemistry. Owing to the unique characteristics, they manifest great value in organic synthesis. In view of the versatile transformations, migration reactions of organoboron compounds have attracted great attention from chemists in recent years due to their high efficiency and mild reaction conditions, which are widely utilized for rapid constructions of carbon-carbon and carbon-heteroatom bonds. Recent progress on 1,2-migration reactions based on tetracoordinate boron intermediates is summarized according to various reaction conditions and bond formations.
[1] | Mellerup, S. K.; Wang, S. Chem. Soc. Rev. 2019, 48, 3537. |
[2] | Bull, S. D.; Davidson, M. G.; van den Elsen, J. M. H.; Fossey, A. T. A.; Jiang, Y.; Kubo, Y.; Marken, F.; Sakurai, K.; Zhao, J.; James, T. D. Acc. Chem. Res. 2012, 46, 312. |
[3] | Brooks, W. L. A.; Sumerlin, B. S. Chem. Rev. 2016, 116, 1375. |
[4] | (a) Leonori, D.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2015, 54, 1082. |
[4] | (b) Gao, G.; Yan, J.; Yang, K.; Chen, F.; Song, Q. Green Chem. 2017, 19, 3997. |
[4] | (c) Gao, G.; Kuang, Z.; Song, Q. Org. Chem. Front. 2018, 5, 2249. |
[4] | (d) Yang, K.; Zhang, F.; Fang, T.; Zhang, G.; Song, Q. Angew. Chem., Int. Ed. 2019, 58, 13421. |
[4] | (e) Shi, D.; Wang, L.; Xia, C.; Liu, C. Chin. J. Org. Chem. 2020, 40, 3605. (in Chinese) |
[4] | ( 史敦发, 王露, 夏春谷, 刘超, 有机化学, 2020, 40, 3605.) |
[4] | (f) Kuang, Z.; Yang, K.; Zhou, Y.; Song, Q. Chem. Commun. 2020, 56, 6469. |
[4] | (g) Yang, K.; Zhang, F.; Fang, T.; Li, C.; Li, W.; Song, Q. Nat. Commun. 2021, 12, 441. |
[4] | (h) Yang, K.; Song, Q. Acc. Chem. Res. 2021, 54, 2298. |
[4] | (i) Zhu, S.; Yan, J.; Zhou, Y.; Yang, K.; Song, Q. Green Synth. Catal. 2021, 2, 299. |
[4] | (j) Wang, C.; Zhou, L.; Yang, K.; Zhang, F.; Song, Q. Chin. J. Chem. 2021, 39, 1825. |
[5] | (a) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633. |
[5] | (b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. |
[5] | (c) Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6722. |
[5] | (d) Lennox, A. J. J.; Lloyd-Jones, G. C. Chem. Soc. Rev. 2014, 43, 412. |
[6] | Brown, H. C.; Subba Rao, B. C. J. Am. Chem. Soc. 1956, 78, 5694. |
[7] | (a) Duan, X.; Liu, N.; Wang, J.; Ma, J. Chin. J. Org. Chem. 2019, 39, 661. (in Chinese) |
[7] | ( 段希焱, 刘宁, 王佳, 马军营, 有机化学, 2019, 39, 661.) |
[7] | (b) Ma, X.; Liu, F.; Mo, D. Chin. J. Org. Chem. 2017, 37, 1069. (in Chinese) |
[7] | ( 马小盼, 刘凤萍, 莫冬亮, 有机化学, 2017, 37, 1069.) |
[7] | (c) Munir, I.; Zahoor, A. F.; Rasool, N.; Naqvi, S. A. R. K.; Zia, M.; Ahmad, R. Mol. Diversity 2019, 23, 215. |
[7] | (d) Qiao, J. X.; Lam, P. Y. S. Synthesis 2011, 829. |
[8] | (a) Candeias, N. R.; Montalbano, F.; Cal, P. M.; Gois, P. M. Chem. Rev. 2015, 42, 6169. |
[8] | (b) Petasis, N. A.; Akritopoulou, I. Tetrahedron Lett. 1993, 34, 583. |
[8] | (c) Wu, P.; Givskov, M.; Nielsen, T. E. Chem. Rev. 2019, 119, 11245. |
[8] | (d) Ming, W.; Liu, X.; Friedrich, A.; Krebs, J.; Budiman, Y. P.; Huang, M.; Marder, T. B. Green Chem. 2020, 22, 2184. |
[9] | Hu, Y.; Liu, C. Univ. Chem. 2019, 34, 39. |
[10] | Matteson, D. S.; Mah, R. W. H. J. Am. Chem. Soc. 1963, 85, 2599. |
[11] | (a) Shimizu, M.; Kitagawa, H.; Kurahashi, T.; Hiyama, T. Angew. Chem., nt. Ed. 2001, 40, 4283. |
[11] | (b) Shimizu, M.; Kurahashi, T.; Kitagawa, H.; Shimono, K.; Hiyama, T. J. Organomet. Chem. 2003, 686, 286. |
[12] | Murakami, M.; Usui, I.; Hasegawa, M.; Matsuda, T. J. Am. Chem. Soc. 2005, 127, 1366. |
[13] | (a) Stymiest, J. L.; French, R. M.; Aggarwal, V. K. Nature 2008, 456, 778. |
[13] | (b) Aggarwal, V. K.; Binanzer, M.; Carolina de Ceglie, M.; Gallanti, M.; Glasspoole, B. W.; Kendrick, S. J. F.; Sonawane, R. P.; Vázquez-Romero, A.; Webster, M. P. Org. Lett. 2011, 13,1490. |
[13] | (c) Blair, D. J.; Tanini, D.; Bateman, J. M.; Scott, H. K.; Myers, E. L.; Aggarwal, V. K. Chem. Sci. 2017, 8, 2898. |
[13] | (d) Fasano, V.; Winter, N.; Noble, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2020, 59, 8502. |
[14] | He, Z.; Yudin, A. K. J. Am. Chem. Soc. 2011, 133, 13770. |
[15] | (a) Wang, L.; Zhang, T.; Sun, W.; He, Z.; Xia, C.; Lan, Y.; Liu, C. J. Am. Chem. Soc. 2017, 139, 5257. |
[15] | (b) Shi, D.; Wang, L.; Xia, C.; Liu, C. Angew. Chem.,Int. Ed. 2018, 57, 1031. |
[16] | He, Z.; Song, F.; Sun, H. Huang, Y. J. Am. Chem. Soc. 2018, 140, 2693. |
[17] | (a) Fordham, J. M.; Grayson, M. N.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2019, 58, 15268. |
[17] | (b) Nandakumar, M.; Rubial, B.; Noble, A.; Myers, E. L.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2020, 59,1187. |
[17] | (c) Fawcett, A.; Murtaza, A.; Gregson, C. H. U.; Aggarwal, V. K. J. Am. Chem. Soc. 2019, 141, 4573. |
[17] | (d) Bennett, S. H.; Fawcett, Alexander.; Denton, E. H. Biberger, Tobias.; Fasano, V.; Aggarwal, V. K. J. Am. Chem. Soc. 2020, 142, 16766. |
[17] | (e) Hari, D. P.; Abell, J. C.; Fasano, Valerio.; Aggarwal, V. K. J. Am. Chem. Soc. 2020, 142, 5515. |
[18] | Jiao, J.; Wang, X. Angew. Chem.,Int. Ed. 2021, 60, 17088. |
[19] | Sharma, H. A.; Essman, J. Z.; Jacobsen, E. N. Science 2021, 374, 752. |
[20] | Hillman, M. E. D. J. Am. Chem. Soc. 1962, 84, 4715. |
[21] | Zweifel, G.; Arzoumanian, H.; Whitney, C. C. J. Am. Chem. Soc. 1967, 89, 3652. |
[22] | Brown, H. C.; Levy, A. B.; and Midland, M. M. J. Am. Chem. Soc. 1975, 97, 5017. |
[23] | Buynak, J. D.; Geng, B. Organometallics 1995, 14, 3112. |
[24] | Hata, T.; Kitagawa, H.; Masai, H.; Kurahashi, T.; Shimizu, M.; Hiyama, T. Angew. Chem., Int. Ed. 2001, 40, 790. |
[25] | Bonet, A.; Odachowski, M.; Leonori, D.; Essafi, S.; Aggarwal, V. K. Nat. Chem. 2014, 6, 584. |
[26] | Morinaga, A.; Nagao, K.; Ohmiya, H.; Sawamura, M. Angew. Chem., Int. Ed. 2015, 54, 15859. |
[27] | Armstrong, R. J.; García‐Ruiz, C.; Myers, E. L.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2017, 56, 786. |
[28] | Yu, S.; Jing, C.; Noble, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2020, 59, 3917. |
[29] | Fasano, Valerio.; Cid, Jessica.; Procter, R. J.; Ross, E.; Ingleson, M. J. Angew. Chem., Int. Ed. 2018, 57, 13293. |
[30] | Tao, Z.; Robb, K. A.; Panger, J. L.; Denmark, S. E. J. Am. Chem. Soc. 2018, 140, 15621. |
[31] | Shen, F.; Lu, L.; Shen, Q. Chem. Sci. 2020, 11, 8020. |
[32] | You, C.; Studer, A. Angew. Chem., Int. Ed. 2020, 59, 17245. |
[33] | Gu, Y.; Duan, Y.; Shen, Y.; Martin, R. Angew. Chem., Int. Ed. 2020, 59, 2061. |
[34] | Yukimori, D.; Nagashima, Y.; Wang, C.; Muranaka, A.; Uchiyama, M. J. Am. Chem. Soc. 2019, 141, 9819. |
[35] | Yang, K.; Hu, X.; Li.; Qiu, J.; Feng, Q.; Wang, S.; Zhang, G.; Kuang, Z.; Yu, P.; Song, Q. Cell Rep. Phys. Sci. 2020, 1, 100268. |
[36] | (a) Barluenga, J.; Tomás-Gamasa, M.; Aznar, F.; Valdés, C. Nat. Chem. 2009, 1, 494. |
[36] | (b) Pérez‐Aguilar, M. C.; Valdés, C. Angew. Chem., Int. Ed. 2012, 24, 5953. |
[36] | (c) Plaza, M.; Valdés, C. J. Am. Chem. Soc. 2016, 138, 12061. |
[36] | (d) Yang, Y.; Tsien, J.; David, A. B.; Hughes, J. M. E.; Merchant, R. R.; Qin, T. J. Am. Chem. Soc. 2021, 143, 471. |
[37] | (a) Li, H.; Wang, L.; Zhang, Y.; Wang, J. Angew. Chem., nt. Ed. 2012, 51, 2943. |
[37] | (b) Li, H.; Shangguan, X.; Zhang, Z.; Huang, S.; Zhang, Y.; Wang, J. Org. Lett. 2014, 16, 448. |
[37] | (c) Wu, G.; Deng, Y.; Wu, C.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2014, 53, 10510. |
[38] | (a) Argintaru, O. A.; Ryu, D. W.; Aron, I.; Molander, G. A. Angew. Chem., Int. Ed. 2013, 52, 13656. |
[38] | (b) Molander, G. A.; Ryu, D. W. Angew. Chem., Int. Ed. 2014, 53, 14181. |
[39] | (a) Cuenca, A. B.; Cid, J.; García-López, Diego.; Carbó, J. J.; Fernández, E. Org. Biomol. Chem. 2015, 13, 9659. |
[39] | (b) Civit, M. G.; Royes, J.; Vogels, C. M.; Westcott, S. A.; Cuenca, A. B.; Fernández, E. Org. Lett. 2016, 18, 3830. |
[40] | Wu, K.; Wu, L.; Zhou, C.; Che, C. Angew. Chem., Int. Ed. 2020, 59, 16202. |
[41] | Simon, J.; Salzbrunn, S.; Prakash, G. K. S.; Petasis, N. A.; Olah, G. A. J. Org. Chem. 2001, 66, 633. |
[42] | Kianmehr, E.; Yahyaee, M.; Tabatabai, K. Tetrahedron Lett. 2007, 48, 2713. |
[43] | Zhu, C.; Wang, R.; Falck, J. R. Org. Lett. 2012, 14, 3494. |
[44] | Molander, G. A.; Raushel, J.; Ellis, N. M. J. Org. Chem. 2010, 75, 4304. |
[45] | Zhu, C.; Li, G.; Ess, D. H.; Falck, J. R.; Ku?rti, L. J. Am. Chem. Soc. 2012, 134, 18253. |
[46] | Mlynarski, S. N.; Karns, A. S.; Morken, J. P. J. Am. Chem. Soc. 2012, 134, 16449. |
[47] | Xiao, Q.; Tian, L.; Tan, R.; Xia, Y.; Qiu, D.; Zhang, Y.; Wang, J. Org. Lett. 2012, 14, 4230. |
[48] | Voth, S.; Hollett, J. W.; McCubbin, J. A. J. Org. Chem. 2015, 80, 2545. |
[49] | Roscales, S.; Csaky, A. G. Org. Lett. 2018, 20, 1667. |
[50] | Sun, H.-B.; Gong, L.; Tian, Y.-B.; Wu, J.-G.; Zhang, X.; Liu, J.; Fu, Z.; Niu, D. Angew. Chem., Int. Ed. 2018, 57, 9456. |
[51] | (a) Liu, X.; Zhu, Q.; Chen, D.; Wang, L.; Jin, Li.; Liu, C. Angew. Chem., Int. Ed. 2020, 59, 2745. |
[51] | (b) Li, H.; Yin, G. Chin. J. Org. Chem. 2020, 40, 547. (in Chinese) |
[51] | ( 李浩阳, 阴国印, 有机化学, 2020, 40, 547.) |
[52] | (a) Pelter, A.; Gould, K. J. J. Chem. Soc., Chem. Commun. 1974, 1029. |
[52] | (b) Sebald, A.; Wrackmeyer, B. J. Chem. Soc., Chem. Commun. 1983, 309. |
[53] | Chan, Y.; Li, N. S.; Deng, M.-Z. Tetrahedron Lett. 1990, 31, 2405. |
[54] | (a) Ishida, N.; Miura, T.; Murakami, M. Chem. Commun. 2007, 4381. |
[54] | (b) Ishida, N.; Shimamoto, Y.; Murakami, M. Org. Lett. 2009, 11, 5434. |
[55] | Lee, M. T.; Goodstein, M. B.; Lalic, G. J. Am. Chem. Soc. 2019, 141, 17086. |
[56] | (a) Ishikura, M.; Terashima, M. J. Chem. Soc., Chem. Commun. 1991, 1219. |
[56] | (b) Panda, S.; Ready, J. M. J. Am. Chem. Soc. 2017, 139, 6038. |
[56] | (c) Panda, S.; Ready, J. M. J. Am. Chem. Soc. 2018, 140, 13242. |
[56] | (d) Das, S.; Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 4053. |
[57] | (a) Zhang, L.; Lovinger, G. J.; Edelstein, E. K.; Szymaniak, A. A.; Chierchia, M. P.; Morken, J. P. Science 2016, 351, 70. |
[57] | (b) Chierchia, M.; Law, C.; Morken, J. P. Angew. Chem., Int. Ed. 2017, 56, 11870. |
[57] | (c) Lovinger, G. J.; Morken, J. P. J. Am. Chem. Soc. 2017, 139, 17293. |
[58] | Jadhav, P. K.; Man, H.-W. J. Am. Chem. Soc. 1997, 119, 846. |
[59] | Fawcett, A.; Biberger, T.; Aggarwal, V. K. Nat. Chem. 2019, 11, 117. |
[60] | (a) Kischkewitz, M.; Okamoto, K.; Mück-Lichtenfeld, C.; Studer, A. Science 2017, 355, 936. |
[60] | (b) Gerleve, C.; Kischkewitz, M.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 2441. |
[60] | (c) Kischkewitz, M.; Gerleve, C.; Studer, A. Org. Lett. 2018, 20, 3666. |
[61] | (a) Silvi, M.; Sandford, C.; Aggarwal, V. K. J. Am. Chem. Soc. 2017, 139, 5736. |
[61] | (b) Tappin, N. D. C.; Gnägi-Lux, M.; Renaud, P. Chem.-Eur. J. 2018, 24, 11498. |
[61] | (c) Zhao, B.; Li, Z.; Wu, Y.; Wang, Y.; Qian, J.; Yuan, Y.; Shi, Z. Angew. Chem., Int. Ed. 2019, 58, 9448. |
[62] | (a) Sandford, C.; Aggarwal, V. K. Chem. Commun. 2017, 53, 5481. |
[62] | (b) Silvi, M.; Schrof, R.; Noble, A.; Aggarwal, V. K. Chem.-Eur. J. 2018, 24, 4279. |
[62] | (c) Davenport, R.; Silvi, M.; Noble, A.; Hosni, Z.; Fey, N.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2020, 132, 6587. |
[63] | Silvi, M.; Aggarwal, V. K. J. Am. Chem. Soc. 2019, 141, 9511. |
[64] | (a) Wang, D.; Mück-Lichtenfeld, C.; Studer, A. J. Am. Chem. Soc. 2019, 141, 14126. |
[64] | (b) Wang, D.; Mück-Lichtenfeld, C.; Studer, A. J. Am. Chem. Soc. 2020, 142, 9119. |
/
〈 |
|
〉 |