综述与进展

基于四配位硼的1,2-迁移反应研究进展

  • 张锋 ,
  • 周鹿 ,
  • 杨凯 ,
  • 宋秋玲
展开
  • a 福州大学化学学院 有机合成与功能福建省高校重点实验室 福州 350108
    b 华侨大学材料学院 新一代物质转化研究所 福建厦门 361021

收稿日期: 2021-10-12

  修回日期: 2021-11-15

  网络出版日期: 2021-12-02

基金资助

国家自然科学基金(21772046); 国家自然科学基金(2193103)

Recent Progress on 1,2-Metallate Shift Reactions Based on Tetracoordinate Boron Intermediates

  • Feng Zhang ,
  • Lu Zhou ,
  • Kai Yang ,
  • Qiuling Song
Expand
  • a Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou 350108
    b Institute of Next Generation Matter Transformation, College of Materials Science Engineering, Huaqiao University, Xiamen, Fujian 361021

Received date: 2021-10-12

  Revised date: 2021-11-15

  Online published: 2021-12-02

Supported by

National Natural Science Foundation of China(21772046); National Natural Science Foundation of China(2193103)

摘要

有机硼化合物是合成方法学中重要且通用的合成骨架. 由于其独特的性质, 它们在有机合成中表现出巨大的价值. 有机硼化合物具有丰富的转化能力, 近年来, 由于其迁移反应高效、反应条件温和而受到了化学家们的广泛关注, 用于快速构建各种碳碳键和碳杂键. 本篇综述根据不同的反应条件和键的形成, 系统总结了近年来基于四配位硼中间体的1,2-迁移反应.

本文引用格式

张锋 , 周鹿 , 杨凯 , 宋秋玲 . 基于四配位硼的1,2-迁移反应研究进展[J]. 有机化学, 2022 , 42(4) : 1013 -1032 . DOI: 10.6023/cjoc202110017

Abstract

Organoboron compounds are important and versatile synthetic building blocks in synthetic chemistry. Owing to the unique characteristics, they manifest great value in organic synthesis. In view of the versatile transformations, migration reactions of organoboron compounds have attracted great attention from chemists in recent years due to their high efficiency and mild reaction conditions, which are widely utilized for rapid constructions of carbon-carbon and carbon-heteroatom bonds. Recent progress on 1,2-migration reactions based on tetracoordinate boron intermediates is summarized according to various reaction conditions and bond formations.

参考文献

[1]
Mellerup, S. K.; Wang, S. Chem. Soc. Rev. 2019, 48, 3537.
[2]
Bull, S. D.; Davidson, M. G.; van den Elsen, J. M. H.; Fossey, A. T. A.; Jiang, Y.; Kubo, Y.; Marken, F.; Sakurai, K.; Zhao, J.; James, T. D. Acc. Chem. Res. 2012, 46, 312.
[3]
Brooks, W. L. A.; Sumerlin, B. S. Chem. Rev. 2016, 116, 1375.
[4]
(a) Leonori, D.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2015, 54, 1082.
[4]
(b) Gao, G.; Yan, J.; Yang, K.; Chen, F.; Song, Q. Green Chem. 2017, 19, 3997.
[4]
(c) Gao, G.; Kuang, Z.; Song, Q. Org. Chem. Front. 2018, 5, 2249.
[4]
(d) Yang, K.; Zhang, F.; Fang, T.; Zhang, G.; Song, Q. Angew. Chem., Int. Ed. 2019, 58, 13421.
[4]
(e) Shi, D.; Wang, L.; Xia, C.; Liu, C. Chin. J. Org. Chem. 2020, 40, 3605. (in Chinese)
[4]
( 史敦发, 王露, 夏春谷, 刘超, 有机化学, 2020, 40, 3605.)
[4]
(f) Kuang, Z.; Yang, K.; Zhou, Y.; Song, Q. Chem. Commun. 2020, 56, 6469.
[4]
(g) Yang, K.; Zhang, F.; Fang, T.; Li, C.; Li, W.; Song, Q. Nat. Commun. 2021, 12, 441.
[4]
(h) Yang, K.; Song, Q. Acc. Chem. Res. 2021, 54, 2298.
[4]
(i) Zhu, S.; Yan, J.; Zhou, Y.; Yang, K.; Song, Q. Green Synth. Catal. 2021, 2, 299.
[4]
(j) Wang, C.; Zhou, L.; Yang, K.; Zhang, F.; Song, Q. Chin. J. Chem. 2021, 39, 1825.
[5]
(a) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633.
[5]
(b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
[5]
(c) Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6722.
[5]
(d) Lennox, A. J. J.; Lloyd-Jones, G. C. Chem. Soc. Rev. 2014, 43, 412.
[6]
Brown, H. C.; Subba Rao, B. C. J. Am. Chem. Soc. 1956, 78, 5694.
[7]
(a) Duan, X.; Liu, N.; Wang, J.; Ma, J. Chin. J. Org. Chem. 2019, 39, 661. (in Chinese)
[7]
( 段希焱, 刘宁, 王佳, 马军营, 有机化学, 2019, 39, 661.)
[7]
(b) Ma, X.; Liu, F.; Mo, D. Chin. J. Org. Chem. 2017, 37, 1069. (in Chinese)
[7]
( 马小盼, 刘凤萍, 莫冬亮, 有机化学, 2017, 37, 1069.)
[7]
(c) Munir, I.; Zahoor, A. F.; Rasool, N.; Naqvi, S. A. R. K.; Zia, M.; Ahmad, R. Mol. Diversity 2019, 23, 215.
[7]
(d) Qiao, J. X.; Lam, P. Y. S. Synthesis 2011, 829.
[8]
(a) Candeias, N. R.; Montalbano, F.; Cal, P. M.; Gois, P. M. Chem. Rev. 2015, 42, 6169.
[8]
(b) Petasis, N. A.; Akritopoulou, I. Tetrahedron Lett. 1993, 34, 583.
[8]
(c) Wu, P.; Givskov, M.; Nielsen, T. E. Chem. Rev. 2019, 119, 11245.
[8]
(d) Ming, W.; Liu, X.; Friedrich, A.; Krebs, J.; Budiman, Y. P.; Huang, M.; Marder, T. B. Green Chem. 2020, 22, 2184.
[9]
Hu, Y.; Liu, C. Univ. Chem. 2019, 34, 39.
[10]
Matteson, D. S.; Mah, R. W. H. J. Am. Chem. Soc. 1963, 85, 2599.
[11]
(a) Shimizu, M.; Kitagawa, H.; Kurahashi, T.; Hiyama, T. Angew. Chem., nt. Ed. 2001, 40, 4283.
[11]
(b) Shimizu, M.; Kurahashi, T.; Kitagawa, H.; Shimono, K.; Hiyama, T. J. Organomet. Chem. 2003, 686, 286.
[12]
Murakami, M.; Usui, I.; Hasegawa, M.; Matsuda, T. J. Am. Chem. Soc. 2005, 127, 1366.
[13]
(a) Stymiest, J. L.; French, R. M.; Aggarwal, V. K. Nature 2008, 456, 778.
[13]
(b) Aggarwal, V. K.; Binanzer, M.; Carolina de Ceglie, M.; Gallanti, M.; Glasspoole, B. W.; Kendrick, S. J. F.; Sonawane, R. P.; Vázquez-Romero, A.; Webster, M. P. Org. Lett. 2011, 13,1490.
[13]
(c) Blair, D. J.; Tanini, D.; Bateman, J. M.; Scott, H. K.; Myers, E. L.; Aggarwal, V. K. Chem. Sci. 2017, 8, 2898.
[13]
(d) Fasano, V.; Winter, N.; Noble, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2020, 59, 8502.
[14]
He, Z.; Yudin, A. K. J. Am. Chem. Soc. 2011, 133, 13770.
[15]
(a) Wang, L.; Zhang, T.; Sun, W.; He, Z.; Xia, C.; Lan, Y.; Liu, C. J. Am. Chem. Soc. 2017, 139, 5257.
[15]
(b) Shi, D.; Wang, L.; Xia, C.; Liu, C. Angew. Chem.,Int. Ed. 2018, 57, 1031.
[16]
He, Z.; Song, F.; Sun, H. Huang, Y. J. Am. Chem. Soc. 2018, 140, 2693.
[17]
(a) Fordham, J. M.; Grayson, M. N.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2019, 58, 15268.
[17]
(b) Nandakumar, M.; Rubial, B.; Noble, A.; Myers, E. L.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2020, 59,1187.
[17]
(c) Fawcett, A.; Murtaza, A.; Gregson, C. H. U.; Aggarwal, V. K. J. Am. Chem. Soc. 2019, 141, 4573.
[17]
(d) Bennett, S. H.; Fawcett, Alexander.; Denton, E. H. Biberger, Tobias.; Fasano, V.; Aggarwal, V. K. J. Am. Chem. Soc. 2020, 142, 16766.
[17]
(e) Hari, D. P.; Abell, J. C.; Fasano, Valerio.; Aggarwal, V. K. J. Am. Chem. Soc. 2020, 142, 5515.
[18]
Jiao, J.; Wang, X. Angew. Chem.,Int. Ed. 2021, 60, 17088.
[19]
Sharma, H. A.; Essman, J. Z.; Jacobsen, E. N. Science 2021, 374, 752.
[20]
Hillman, M. E. D. J. Am. Chem. Soc. 1962, 84, 4715.
[21]
Zweifel, G.; Arzoumanian, H.; Whitney, C. C. J. Am. Chem. Soc. 1967, 89, 3652.
[22]
Brown, H. C.; Levy, A. B.; and Midland, M. M. J. Am. Chem. Soc. 1975, 97, 5017.
[23]
Buynak, J. D.; Geng, B. Organometallics 1995, 14, 3112.
[24]
Hata, T.; Kitagawa, H.; Masai, H.; Kurahashi, T.; Shimizu, M.; Hiyama, T. Angew. Chem., Int. Ed. 2001, 40, 790.
[25]
Bonet, A.; Odachowski, M.; Leonori, D.; Essafi, S.; Aggarwal, V. K. Nat. Chem. 2014, 6, 584.
[26]
Morinaga, A.; Nagao, K.; Ohmiya, H.; Sawamura, M. Angew. Chem., Int. Ed. 2015, 54, 15859.
[27]
Armstrong, R. J.; García‐Ruiz, C.; Myers, E. L.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2017, 56, 786.
[28]
Yu, S.; Jing, C.; Noble, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2020, 59, 3917.
[29]
Fasano, Valerio.; Cid, Jessica.; Procter, R. J.; Ross, E.; Ingleson, M. J. Angew. Chem., Int. Ed. 2018, 57, 13293.
[30]
Tao, Z.; Robb, K. A.; Panger, J. L.; Denmark, S. E. J. Am. Chem. Soc. 2018, 140, 15621.
[31]
Shen, F.; Lu, L.; Shen, Q. Chem. Sci. 2020, 11, 8020.
[32]
You, C.; Studer, A. Angew. Chem., Int. Ed. 2020, 59, 17245.
[33]
Gu, Y.; Duan, Y.; Shen, Y.; Martin, R. Angew. Chem., Int. Ed. 2020, 59, 2061.
[34]
Yukimori, D.; Nagashima, Y.; Wang, C.; Muranaka, A.; Uchiyama, M. J. Am. Chem. Soc. 2019, 141, 9819.
[35]
Yang, K.; Hu, X.; Li.; Qiu, J.; Feng, Q.; Wang, S.; Zhang, G.; Kuang, Z.; Yu, P.; Song, Q. Cell Rep. Phys. Sci. 2020, 1, 100268.
[36]
(a) Barluenga, J.; Tomás-Gamasa, M.; Aznar, F.; Valdés, C. Nat. Chem. 2009, 1, 494.
[36]
(b) Pérez‐Aguilar, M. C.; Valdés, C. Angew. Chem., Int. Ed. 2012, 24, 5953.
[36]
(c) Plaza, M.; Valdés, C. J. Am. Chem. Soc. 2016, 138, 12061.
[36]
(d) Yang, Y.; Tsien, J.; David, A. B.; Hughes, J. M. E.; Merchant, R. R.; Qin, T. J. Am. Chem. Soc. 2021, 143, 471.
[37]
(a) Li, H.; Wang, L.; Zhang, Y.; Wang, J. Angew. Chem., nt. Ed. 2012, 51, 2943.
[37]
(b) Li, H.; Shangguan, X.; Zhang, Z.; Huang, S.; Zhang, Y.; Wang, J. Org. Lett. 2014, 16, 448.
[37]
(c) Wu, G.; Deng, Y.; Wu, C.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2014, 53, 10510.
[38]
(a) Argintaru, O. A.; Ryu, D. W.; Aron, I.; Molander, G. A. Angew. Chem., Int. Ed. 2013, 52, 13656.
[38]
(b) Molander, G. A.; Ryu, D. W. Angew. Chem., Int. Ed. 2014, 53, 14181.
[39]
(a) Cuenca, A. B.; Cid, J.; García-López, Diego.; Carbó, J. J.; Fernández, E. Org. Biomol. Chem. 2015, 13, 9659.
[39]
(b) Civit, M. G.; Royes, J.; Vogels, C. M.; Westcott, S. A.; Cuenca, A. B.; Fernández, E. Org. Lett. 2016, 18, 3830.
[40]
Wu, K.; Wu, L.; Zhou, C.; Che, C. Angew. Chem., Int. Ed. 2020, 59, 16202.
[41]
Simon, J.; Salzbrunn, S.; Prakash, G. K. S.; Petasis, N. A.; Olah, G. A. J. Org. Chem. 2001, 66, 633.
[42]
Kianmehr, E.; Yahyaee, M.; Tabatabai, K. Tetrahedron Lett. 2007, 48, 2713.
[43]
Zhu, C.; Wang, R.; Falck, J. R. Org. Lett. 2012, 14, 3494.
[44]
Molander, G. A.; Raushel, J.; Ellis, N. M. J. Org. Chem. 2010, 75, 4304.
[45]
Zhu, C.; Li, G.; Ess, D. H.; Falck, J. R.; Ku?rti, L. J. Am. Chem. Soc. 2012, 134, 18253.
[46]
Mlynarski, S. N.; Karns, A. S.; Morken, J. P. J. Am. Chem. Soc. 2012, 134, 16449.
[47]
Xiao, Q.; Tian, L.; Tan, R.; Xia, Y.; Qiu, D.; Zhang, Y.; Wang, J. Org. Lett. 2012, 14, 4230.
[48]
Voth, S.; Hollett, J. W.; McCubbin, J. A. J. Org. Chem. 2015, 80, 2545.
[49]
Roscales, S.; Csaky, A. G. Org. Lett. 2018, 20, 1667.
[50]
Sun, H.-B.; Gong, L.; Tian, Y.-B.; Wu, J.-G.; Zhang, X.; Liu, J.; Fu, Z.; Niu, D. Angew. Chem., Int. Ed. 2018, 57, 9456.
[51]
(a) Liu, X.; Zhu, Q.; Chen, D.; Wang, L.; Jin, Li.; Liu, C. Angew. Chem., Int. Ed. 2020, 59, 2745.
[51]
(b) Li, H.; Yin, G. Chin. J. Org. Chem. 2020, 40, 547. (in Chinese)
[51]
( 李浩阳, 阴国印, 有机化学, 2020, 40, 547.)
[52]
(a) Pelter, A.; Gould, K. J. J. Chem. Soc., Chem. Commun. 1974, 1029.
[52]
(b) Sebald, A.; Wrackmeyer, B. J. Chem. Soc., Chem. Commun. 1983, 309.
[53]
Chan, Y.; Li, N. S.; Deng, M.-Z. Tetrahedron Lett. 1990, 31, 2405.
[54]
(a) Ishida, N.; Miura, T.; Murakami, M. Chem. Commun. 2007, 4381.
[54]
(b) Ishida, N.; Shimamoto, Y.; Murakami, M. Org. Lett. 2009, 11, 5434.
[55]
Lee, M. T.; Goodstein, M. B.; Lalic, G. J. Am. Chem. Soc. 2019, 141, 17086.
[56]
(a) Ishikura, M.; Terashima, M. J. Chem. Soc., Chem. Commun. 1991, 1219.
[56]
(b) Panda, S.; Ready, J. M. J. Am. Chem. Soc. 2017, 139, 6038.
[56]
(c) Panda, S.; Ready, J. M. J. Am. Chem. Soc. 2018, 140, 13242.
[56]
(d) Das, S.; Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 4053.
[57]
(a) Zhang, L.; Lovinger, G. J.; Edelstein, E. K.; Szymaniak, A. A.; Chierchia, M. P.; Morken, J. P. Science 2016, 351, 70.
[57]
(b) Chierchia, M.; Law, C.; Morken, J. P. Angew. Chem., Int. Ed. 2017, 56, 11870.
[57]
(c) Lovinger, G. J.; Morken, J. P. J. Am. Chem. Soc. 2017, 139, 17293.
[58]
Jadhav, P. K.; Man, H.-W. J. Am. Chem. Soc. 1997, 119, 846.
[59]
Fawcett, A.; Biberger, T.; Aggarwal, V. K. Nat. Chem. 2019, 11, 117.
[60]
(a) Kischkewitz, M.; Okamoto, K.; Mück-Lichtenfeld, C.; Studer, A. Science 2017, 355, 936.
[60]
(b) Gerleve, C.; Kischkewitz, M.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 2441.
[60]
(c) Kischkewitz, M.; Gerleve, C.; Studer, A. Org. Lett. 2018, 20, 3666.
[61]
(a) Silvi, M.; Sandford, C.; Aggarwal, V. K. J. Am. Chem. Soc. 2017, 139, 5736.
[61]
(b) Tappin, N. D. C.; Gnägi-Lux, M.; Renaud, P. Chem.-Eur. J. 2018, 24, 11498.
[61]
(c) Zhao, B.; Li, Z.; Wu, Y.; Wang, Y.; Qian, J.; Yuan, Y.; Shi, Z. Angew. Chem., Int. Ed. 2019, 58, 9448.
[62]
(a) Sandford, C.; Aggarwal, V. K. Chem. Commun. 2017, 53, 5481.
[62]
(b) Silvi, M.; Schrof, R.; Noble, A.; Aggarwal, V. K. Chem.-Eur. J. 2018, 24, 4279.
[62]
(c) Davenport, R.; Silvi, M.; Noble, A.; Hosni, Z.; Fey, N.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2020, 132, 6587.
[63]
Silvi, M.; Aggarwal, V. K. J. Am. Chem. Soc. 2019, 141, 9511.
[64]
(a) Wang, D.; Mück-Lichtenfeld, C.; Studer, A. J. Am. Chem. Soc. 2019, 141, 14126.
[64]
(b) Wang, D.; Mück-Lichtenfeld, C.; Studer, A. J. Am. Chem. Soc. 2020, 142, 9119.
文章导航

/